IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i1p508-530.html
   My bibliography  Save this article

Equilibrium concepts for time‐inconsistent stopping problems in continuous time

Author

Listed:
  • Erhan Bayraktar
  • Jingjie Zhang
  • Zhou Zhou

Abstract

A new notion of equilibrium, which we call strong equilibrium, is introduced for time‐inconsistent stopping problems in continuous time. Compared to the existing notions introduced in Huang, Y.‐J., & Nguyen‐Huu, A. (2018, Jan 01). Time‐consistent stopping under decreasing impatience. Finance and Stochastics, 22(1), 69–95 and Christensen, S., & Lindensjö, K. (2018). On finding equilibrium stopping times for time‐inconsistent markovian problems. SIAM Journal on Control and Optimization, 56(6), 4228–4255, which in this paper are called mild equilibrium and weak equilibrium, respectively, a strong equilibrium captures the idea of subgame perfect Nash equilibrium more accurately. When the state process is a continuous‐time Markov chain and the discount function is log subadditive, we show that an optimal mild equilibrium is always a strong equilibrium. Moreover, we provide a new iteration method that can directly construct an optimal mild equilibrium and thus also prove its existence.

Suggested Citation

  • Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:1:p:508-530
    DOI: 10.1111/mafi.12293
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12293
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yu‐Jui Huang & Adrien Nguyen‐Huu & Xun Yu Zhou, 2020. "General stopping behaviors of naïve and noncommitted sophisticated agents, with application to probability distortion," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 310-340, January.
    2. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    3. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    4. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    5. Yu-Jui Huang & Adrien Nguyen-Huu & Xun Yu Zhou, 2018. "General stopping behaviors of naïve and non-committed sophisticated agents, with application to probability distortion," CEE-M Working Papers 18-16, CEE-M, Universitiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    6. George Loewenstein & Drazen Prelec, 1992. "Anomalies in Intertemporal Choice: Evidence and an Interpretation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 573-597.
    7. Thaler, Richard, 1981. "Some empirical evidence on dynamic inconsistency," Economics Letters, Elsevier, vol. 8(3), pages 201-207.
    8. Yu-Jui Huang & Xiang Yu, 2019. "Optimal Stopping under Model Ambiguity: a Time-Consistent Equilibrium Approach," Papers 1906.01232, arXiv.org, revised Mar 2021.
    9. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    10. Loewenstein, George & Thaler, Richard H, 1989. "Intertemporal Choice," Journal of Economic Perspectives, American Economic Association, vol. 3(4), pages 181-193, Fall.
    11. Noor, Jawwad, 2009. "Decreasing impatience and the magnitude effect jointly contradict exponential discounting," Journal of Economic Theory, Elsevier, vol. 144(2), pages 869-875, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    2. Soren Christensen & Kristoffer Lindensjo, 2019. "Time-inconsistent stopping, myopic adjustment & equilibrium stability: with a mean-variance application," Papers 1909.11921, arXiv.org, revised Jan 2020.
    3. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    4. Yu‐Jui Huang & Xiang Yu, 2021. "Optimal stopping under model ambiguity: A time‐consistent equilibrium approach," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 979-1012, July.
    5. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    6. Shuoqing Deng & Xiang Yu & Jiacheng Zhang, 2023. "On time-consistent equilibrium stopping under aggregation of diverse discount rates," Papers 2302.07470, arXiv.org, revised Dec 2023.
    7. Zongxia Liang & Fengyi Yuan, 2021. "Weak equilibria for time-inconsistent control: with applications to investment-withdrawal decisions," Papers 2105.06607, arXiv.org, revised Jun 2023.
    8. Pengyu Wei & Wei Wei, 2024. "Irreversible investment under weighted discounting: effects of decreasing impatience," Papers 2409.01478, arXiv.org.
    9. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    2. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    3. Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Finance and Stochastics, Springer, vol. 22(1), pages 69-95, January.
    4. Yu‐Jui Huang & Zhou Zhou, 2020. "Optimal equilibria for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1103-1134, July.
    5. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    6. Yu-Jui Huang & Zhou Zhou, 2017. "The Optimal Equilibrium for Time-Inconsistent Stopping Problems -- the Discrete-Time Case," Papers 1707.04981, arXiv.org, revised Dec 2018.
    7. Yu-Jui Huang & Zhou Zhou, 2021. "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria," Papers 2101.00343, arXiv.org, revised Dec 2021.
    8. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    9. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    10. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    11. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    12. Soren Christensen & Kristoffer Lindensjo, 2019. "Time-inconsistent stopping, myopic adjustment & equilibrium stability: with a mean-variance application," Papers 1909.11921, arXiv.org, revised Jan 2020.
    13. Denis Belomestny & Tobias Hübner & Volker Krätschmer, 2022. "Solving optimal stopping problems under model uncertainty via empirical dual optimisation," Finance and Stochastics, Springer, vol. 26(3), pages 461-503, July.
    14. Barry Sopher & Arnav Sheth, 2006. "A Deeper Look at Hyperbolic Discounting," Theory and Decision, Springer, vol. 60(2), pages 219-255, May.
    15. Fernando S. Machado & Rajiv K. Sinha, 2007. "Smoking Cessation: A Model of Planned vs. Actual Behavior for Time-Inconsistent Consumers," Marketing Science, INFORMS, vol. 26(6), pages 834-850, 11-12.
    16. Camilo Hern'andez & Dylan Possamai, 2020. "Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents," Papers 2002.12572, arXiv.org, revised Jul 2021.
    17. Ted O'Donoghue & Matthew Rabin, 2001. "Choice and Procrastination," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(1), pages 121-160.
    18. Qian Lei & Chi Seng Pun, 2021. "Nonlocality, Nonlinearity, and Time Inconsistency in Stochastic Differential Games," Papers 2112.14409, arXiv.org, revised Sep 2023.
    19. Yu-Jui Huang & Zhou Zhou, 2018. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Papers 1809.09243, arXiv.org, revised Aug 2019.
    20. Murat Yilmaz, 2018. "An Extended Survey of Time-Inconsistency and Its Applications," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 32(1), pages 55-73.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:1:p:508-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.