IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01950058.html
   My bibliography  Save this paper

Time-consistent stopping under decreasing impatience

Author

Listed:
  • Yu-Jui Huang

    (University of Colorado - Department of Applied Mathematics - University of Colorado [Boulder])

  • Adrien Nguyen-Huu

    (CEE-M - Centre d'Economie de l'Environnement - Montpellier - FRE2010 - INRA - Institut National de la Recherche Agronomique - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

Abstract

Under non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in game theory and provides "agent-specific" results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model.

Suggested Citation

  • Yu-Jui Huang & Adrien Nguyen-Huu, 2018. "Time-consistent stopping under decreasing impatience," Post-Print hal-01950058, HAL.
  • Handle: RePEc:hal:journl:hal-01950058
    DOI: 10.1007/s00780-017-0350-6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. R. A. Pollak, 1968. "Consistent Planning," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(2), pages 201-208.
    2. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    3. Karp, Larry, 2005. "Non-Constant Discounting in Continuous Time," Institute for Research on Labor and Employment, Working Paper Series qt0nn1t22z, Institute of Industrial Relations, UC Berkeley.
    4. R. H. Strotz, 1955. "Myopia and Inconsistency in Dynamic Utility Maximization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(3), pages 165-180.
    5. Grenadier, Steven R. & Wang, Neng, 2007. "Investment under uncertainty and time-inconsistent preferences," Journal of Financial Economics, Elsevier, vol. 84(1), pages 2-39, April.
    6. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    7. Zuo Quan Xu & Xun Yu Zhou, 2011. "Optimal stopping under probability distortion," Papers 1103.1755, arXiv.org, revised Feb 2013.
    8. Hayashi, Takashi, 2009. "Stopping with anticipated regret," Journal of Mathematical Economics, Elsevier, vol. 45(7-8), pages 479-490, July.
    9. Thaler, Richard, 1981. "Some empirical evidence on dynamic inconsistency," Economics Letters, Elsevier, vol. 8(3), pages 201-207.
    10. Drazen Prelec, 2004. "Decreasing Impatience: A Criterion for Non‐stationary Time Preference and “Hyperbolic” Discounting," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(3), pages 511-532, October.
    11. Noor, Jawwad, 2009. "Hyperbolic discounting and the standard model: Eliciting discount functions," Journal of Economic Theory, Elsevier, vol. 144(5), pages 2077-2083, September.
    12. Loewenstein, George & Thaler, Richard H, 1989. "Intertemporal Choice," Journal of Economic Perspectives, American Economic Association, vol. 3(4), pages 181-193, Fall.
    13. Sebastian Ebert & Philipp Strack, 2015. "Until the Bitter End: On Prospect Theory in a Dynamic Context," American Economic Review, American Economic Association, vol. 105(4), pages 1618-1633, April.
    14. Stahl Dale O., 1993. "Evolution of Smartn Players," Games and Economic Behavior, Elsevier, vol. 5(4), pages 604-617, October.
    15. Erhan Bayraktar & Yu-Jui Huang, 2010. "On the Multi-Dimensional Controller and Stopper Games," Papers 1009.0932, arXiv.org, revised Jan 2013.
    16. Stahl, Dale II & Wilson, Paul W., 1994. "Experimental evidence on players' models of other players," Journal of Economic Behavior & Organization, Elsevier, vol. 25(3), pages 309-327, December.
    17. Karp, L, 2007. "Non-constant discounting in continuous time," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8d52f6w7, Department of Agricultural & Resource Economics, UC Berkeley.
    18. Karp, Larry, 2007. "Non-constant discounting in continuous time," Journal of Economic Theory, Elsevier, vol. 132(1), pages 557-568, January.
    19. Marcel Nutz, 2010. "Random G-expectations," Papers 1009.2168, arXiv.org, revised Sep 2013.
    20. repec:dau:papers:123456789/11473 is not listed on IDEAS
    21. George Loewenstein & Drazen Prelec, 1992. "Anomalies in Intertemporal Choice: Evidence and an Interpretation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 573-597.
    22. Nicholas Barberis, 2012. "A Model of Casino Gambling," Management Science, INFORMS, vol. 58(1), pages 35-51, January.
    23. Tomas Björk & Mariana Khapko & Agatha Murgoci, 2017. "On time-inconsistent stochastic control in continuous time," Finance and Stochastics, Springer, vol. 21(2), pages 331-360, April.
    24. David Laibson, 1997. "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 112(2), pages 443-478.
    25. Noor, Jawwad, 2009. "Decreasing impatience and the magnitude effect jointly contradict exponential discounting," Journal of Economic Theory, Elsevier, vol. 144(2), pages 869-875, March.
    26. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu‐Jui Huang & Zhou Zhou, 2020. "Optimal equilibria for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1103-1134, July.
    2. Kaufmann, Marc, 2022. "Projection bias in effort choices," Games and Economic Behavior, Elsevier, vol. 135(C), pages 368-393.
    3. Yu‐Jui Huang & Adrien Nguyen‐Huu & Xun Yu Zhou, 2020. "General stopping behaviors of naïve and noncommitted sophisticated agents, with application to probability distortion," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 310-340, January.
    4. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    5. Christensen, Sören & Lindensjö, Kristoffer, 2020. "On time-inconsistent stopping problems and mixed strategy stopping times," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2886-2917.
    6. Soren Christensen & Kristoffer Lindensjo, 2019. "Moment constrained optimal dividends: precommitment \& consistent planning," Papers 1909.10749, arXiv.org.
    7. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    8. Yu-Jui Huang & Zhou Zhou, 2018. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Papers 1809.09243, arXiv.org, revised Aug 2019.
    9. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    10. Yu-Jui Huang & Zhou Zhou, 2017. "The Optimal Equilibrium for Time-Inconsistent Stopping Problems -- the Discrete-Time Case," Papers 1707.04981, arXiv.org, revised Dec 2018.
    11. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    12. Soren Christensen & Kristoffer Lindensjo, 2019. "Time-inconsistent stopping, myopic adjustment & equilibrium stability: with a mean-variance application," Papers 1909.11921, arXiv.org, revised Jan 2020.
    13. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
    14. Yu-Jui Huang & Zhou Zhou, 2021. "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria," Papers 2101.00343, arXiv.org, revised Dec 2021.
    15. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    16. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    17. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    18. Yu‐Jui Huang & Xiang Yu, 2021. "Optimal stopping under model ambiguity: A time‐consistent equilibrium approach," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 979-1012, July.
    19. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    20. Gad, Kamille Sofie Tågholt & Matomäki, Pekka, 2020. "Optimal variance stopping with linear diffusions," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2349-2383.
    21. Yu-Jui Huang & Zhou Zhou, 2021. "Strong and Weak Equilibria for Time-Inconsistent Stochastic Control in Continuous Time," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 428-451, May.
    22. Yu-Jui Huang & Adrien Nguyen-Huu & Xun Yu Zhou, 2017. "Stopping Behaviors of Naïve and Non-Committed Sophisticated Agents when They Distort Probability [Comportement d'arrêt des agents naïfs et sophistiqués sous distorsion des probabilités perçues]," Working Papers hal-01586655, HAL.
    23. Shuoqing Deng & Xiang Yu & Jiacheng Zhang, 2023. "On time-consistent equilibrium stopping under aggregation of diverse discount rates," Papers 2302.07470, arXiv.org, revised Dec 2023.
    24. Zongxia Liang & Fengyi Yuan, 2021. "Weak equilibria for time-inconsistent control: with applications to investment-withdrawal decisions," Papers 2105.06607, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jui Huang & Zhou Zhou, 2017. "The Optimal Equilibrium for Time-Inconsistent Stopping Problems -- the Discrete-Time Case," Papers 1707.04981, arXiv.org, revised Dec 2018.
    2. Murat Yilmaz, 2018. "An Extended Survey of Time-Inconsistency and Its Applications," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 32(1), pages 55-73.
    3. Ebert, Sebastian & Wei, Wei & Zhou, Xun Yu, 2020. "Weighted discounting—On group diversity, time-inconsistency, and consequences for investment," Journal of Economic Theory, Elsevier, vol. 189(C).
    4. Chen, Shumin & Zeng, Yan & Hao, Zhifeng, 2017. "Optimal dividend strategies with time-inconsistent preferences and transaction costs in the Cramér–Lundberg model," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 31-45.
    5. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    6. Marín-Solano, Jesús & Navas, Jorge, 2010. "Consumption and portfolio rules for time-inconsistent investors," European Journal of Operational Research, Elsevier, vol. 201(3), pages 860-872, March.
    7. Pengyu Wei & Wei Wei, 2024. "Irreversible investment under weighted discounting: effects of decreasing impatience," Papers 2409.01478, arXiv.org.
    8. Kang, Minwook & Kim, Eungsik, 2023. "A government policy with time-inconsistent consumers," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 44-67.
    9. Yu-Jui Huang & Zhou Zhou, 2017. "Optimal Equilibria for Time-Inconsistent Stopping Problems in Continuous Time," Papers 1712.07806, arXiv.org, revised Oct 2018.
    10. Caputo, Michael R., 2013. "The intrinsic comparative dynamics of infinite horizon optimal control problems with a time-varying discount rate and time-distance discounting," Journal of Economic Dynamics and Control, Elsevier, vol. 37(4), pages 810-820.
    11. Zhao, Qian & Shen, Yang & Wei, Jiaqin, 2014. "Consumption–investment strategies with non-exponential discounting and logarithmic utility," European Journal of Operational Research, Elsevier, vol. 238(3), pages 824-835.
    12. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.
    13. Takeo Hori & Koichi Futagami, 2019. "A Non‐unitary Discount Rate Model," Economica, London School of Economics and Political Science, vol. 86(341), pages 139-165, January.
    14. Marín-Solano, Jesús & Navas, Jorge, 2009. "Non-constant discounting in finite horizon: The free terminal time case," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 666-675, March.
    15. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
    16. Zou, Ziran & Chen, Shou & Wedge, Lei, 2014. "Finite horizon consumption and portfolio decisions with stochastic hyperbolic discounting," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 70-80.
    17. O'Donoghue, Ted & Rabin, Matthew, 2008. "Procrastination on long-term projects," Journal of Economic Behavior & Organization, Elsevier, vol. 66(2), pages 161-175, May.
    18. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    19. Bart Cockx & Corinna Ghirelli & Bruno Van der Linden, 2013. "Monitoring Job Search Effort with Hyperbolic Time Preferences and Non-Compliance: A Welfare Analysis," CESifo Working Paper Series 4187, CESifo.
    20. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.

    More about this item

    Keywords

    decreasing impatience; hyperbolic discounting; iterative approach; optimal stopping; subgame-perfect Nash equilibrium; time inconsistency;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01950058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.