IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.04606.html
   My bibliography  Save this paper

Pricing Interest Rate Derivatives under Volatility Uncertainty

Author

Listed:
  • Julian Holzermann

Abstract

In this paper, we study the pricing of contracts in fixed income markets under volatility uncertainty in the sense of Knightian uncertainty or model uncertainty. The starting point is an arbitrage-free bond market under volatility uncertainty. The uncertainty about the volatility is modeled by a G-Brownian motion, which drives the forward rate dynamics. The absence of arbitrage is ensured by a drift condition. Such a setting leads to a sublinear pricing measure for additional contracts, which yields either a single price or a range of prices. Similar to the forward measure approach, we define the forward sublinear expectation to simplify the pricing of cashflows. Under the forward sublinear expectation, we obtain a robust version of the expectations hypothesis, and we show how to price options on forward prices. In addition, we develop pricing methods for contracts consisting of a stream of cashflows, since the nonlinearity of the pricing measure implies that we cannot price a stream of cashflows by pricing each cashflow separately. With these tools, we derive robust pricing formulas for all major interest rate derivatives. The pricing formulas provide a link to the pricing formulas of traditional models without volatility uncertainty and show that volatility uncertainty naturally leads to unspanned stochastic volatility.

Suggested Citation

  • Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2003.04606
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.04606
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurence Carassus & Jan Obloj & Johannes Wiesel, 2018. "The robust superreplication problem: a dynamic approach," Papers 1812.11201, arXiv.org, revised Feb 2019.
    2. Dylan Possamai & Guillaume Royer & Nizar Touzi, 2013. "On the Robust superhedging of measurable claims," Papers 1302.1850, arXiv.org, revised Feb 2013.
    3. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    4. Erhan Bayraktar & Zhou Zhou, 2017. "On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
    5. Marcel Nutz, 2010. "Random G-expectations," Papers 1009.2168, arXiv.org, revised Sep 2013.
    6. Marcel Nutz & Ramon van Handel, 2012. "Constructing Sublinear Expectations on Path Space," Papers 1205.2415, arXiv.org, revised Apr 2013.
    7. repec:bla:jfinan:v:44:y:1989:i:1:p:205-09 is not listed on IDEAS
    8. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    9. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    10. Damir Filipović & Martin Larsson & Francesco Statti, 2019. "Unspanned stochastic volatility in the multifactor CIR model," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 827-836, July.
    11. Alexander Schied & Iryna Voloshchenko, 2015. "Pathwise no-arbitrage in a class of Delta hedging strategies," Papers 1511.00026, arXiv.org, revised Jun 2016.
    12. Alan Brace & Marek Musiela, 1994. "A Multifactor Gauss Markov Implementation Of Heath, Jarrow, And Morton," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 259-283, July.
    13. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    14. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    15. Nutz, Marcel & van Handel, Ramon, 2013. "Constructing sublinear expectations on path space," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3100-3121.
    16. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    17. David Epstein & Paul Wilmott, 1999. "A Nonlinear Non-probabilistic Spot Interest Rate Model," OFRC Working Papers Series 1999mf21, Oxford Financial Research Centre.
    18. Frank Riedel, 2015. "Financial economics without probabilistic prior assumptions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 75-91, April.
    19. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    20. Anna Aksamit & Shuoqing Deng & Jan Obłój & Xiaolu Tan, 2019. "The robust pricing–hedging duality for American options in discrete time financial markets," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 861-897, July.
    21. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    22. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    23. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    24. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    25. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    26. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    27. Damir Filipović & Martin Larsson & Anders B. Trolle, 2017. "Linear-Rational Term Structure Models," Journal of Finance, American Finance Association, vol. 72(2), pages 655-704, April.
    28. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    2. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    3. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    4. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    5. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    6. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    7. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    8. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    9. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, March.
    10. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    11. Hölzermann, Julian & Lin, Qian, 2019. "Term Structure Modeling under Volatility Uncertainty: A Forward Rate Model driven by G-Brownian Motion," Center for Mathematical Economics Working Papers 613, Center for Mathematical Economics, Bielefeld University.
    12. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    13. Dylan Possamai & Xiaolu Tan & Chao Zhou, 2015. "Stochastic control for a class of nonlinear kernels and applications," Papers 1510.08439, arXiv.org, revised Jul 2017.
    14. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    15. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    16. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    17. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    18. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.
    19. Christian Bender & Sebastian Ferrando & Alfredo Gonzalez, 2021. "Model-Free Finance and Non-Lattice Integration," Papers 2105.10623, arXiv.org.
    20. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.04606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.