IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i1p244-268.html
   My bibliography  Save this article

Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes

Author

Listed:
  • Kristian Bjørn Hessellund
  • Ganggang Xu
  • Yongtao Guan
  • Rasmus Waagepetersen

Abstract

This paper introduces a new approach to inferring the second‐order properties of a multivariate log Gaussian Cox process (LGCP) with a complex intensity function. We assume a semi‐parametric model for the multivariate intensity function containing an unspecified complex factor common to all types of points. Given this model, we construct a second‐order conditional composite likelihood to infer the pair correlation and cross pair correlation functions of the LGCP. Crucially this likelihood does not depend on the unspecified part of the intensity function. We also introduce a cross‐validation method for model selection and an algorithm for regularized inference that can be used to obtain sparse models for cross pair correlation functions. The methodology is applied to simulated data as well as data examples from microscopy and criminology. This shows how the new approach outperforms existing alternatives where the intensity functions are estimated non‐parametrically.

Suggested Citation

  • Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:1:p:244-268
    DOI: 10.1111/rssc.12530
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12530
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adrian Baddeley & Aruna Jammalamadaka & Gopalan Nair, 2014. "Multitype point process analysis of spines on the dendrite network of a neuron," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(5), pages 673-694, November.
    2. Guan, Yongtao & Waagepetersen, Rasmus & Beale, Colin M., 2008. "Second-Order Analysis of Inhomogeneous Spatial Point Processes With Proportional Intensity Functions," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 769-777, June.
    3. O Cronie & M N M Van Lieshout, 2018. "A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions," Biometrika, Biometrika Trust, vol. 105(2), pages 455-462.
    4. P. J. Diggle & V. Gómez-Rubio & P. E. Brown & A. G. Chetwynd & S. Gooding, 2007. "Second-Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data," Biometrics, The International Biometric Society, vol. 63(2), pages 550-557, June.
    5. Roy S. Herbst & Jean-Charles Soria & Marcin Kowanetz & Gregg D. Fine & Omid Hamid & Michael S. Gordon & Jeffery A. Sosman & David F. McDermott & John D. Powderly & Scott N. Gettinger & Holbrook E. K. , 2014. "Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients," Nature, Nature, vol. 515(7528), pages 563-567, November.
    6. P. A. Henrys & P. E. Brown, 2009. "Inference for Clustered Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(2), pages 423-430, June.
    7. Yiyi Yan & Alexey A Leontovich & Michael J Gerdes & Keyur Desai & Jinhong Dong & Anup Sood & Alberto Santamaria-Pang & Aaron S Mansfield & Chrystal Chadwick & Rong Zhang & Wendy K Nevala & Thomas J Fl, 2019. "Understanding heterogeneous tumor microenvironment in metastatic melanoma," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    8. repec:bla:biomet:v:71:y:2015:i:4:p:1022-1033 is not listed on IDEAS
    9. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Rasmus Waagepetersen & Yongtao Guan & Abdollah Jalilian & Jorge Mateu, 2016. "Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(1), pages 77-96, January.
    12. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    19. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    20. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:1:p:244-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.