IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v043i14.html
   My bibliography  Save this article

spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R

Author

Listed:
  • Scheipl, Fabian

Abstract

The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respective covariates, and (3) to estimate their shapes. Selection and regularization of the model terms is based on a novel spike-and-slab-type prior on coefficient groups associated with parametric and semi-parametric effects.

Suggested Citation

  • Scheipl, Fabian, 2011. "spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i14).
  • Handle: RePEc:jss:jstsof:v:043:i14
    DOI: http://hdl.handle.net/10.18637/jss.v043.i14
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v043i14/v43i14.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v043i14/spikeSlabGAM_1.0-0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v043i14/v43i14.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v043.i14?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    2. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    3. Umlauf, Nikolaus & Adler, Daniel & Kneib, Thomas & Lang, Stefan & Zeileis, Achim, 2015. "Structured Additive Regression Models: An R Interface to BayesX," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i21).
    4. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
    5. Jorge Castillo-Mateo & Jesús Asín & Ana C. Cebrián & Jesús Mateo-Lázaro & Jesús Abaurrea, 2023. "Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
    6. Chase N. Joyner & Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2020. "From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data," Biometrics, The International Biometric Society, vol. 76(3), pages 913-923, September.
    7. Li He & Yu-Bo Wang & William C. Bridges & Zhulin He & S. Megan Che, 2023. "Bayesian Framework for Causal Inference with Principal Stratification and Clusters," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 114-140, April.
    8. Rachel Carroll & Andrew B. Lawson & Delia Voronca & Chawarat Rotejanaprasert & John E. Vena & Claire Marjorie Aelion & Diane L. Kamen, 2014. "Spatial Environmental Modeling of Autoantibody Outcomes among an African American Population," IJERPH, MDPI, vol. 11(3), pages 1-16, March.
    9. Benjamin Heuclin & Frédéric Mortier & Catherine Trottier & Marie Denis, 2021. "Bayesian varying coefficient model with selection: An application to functional mapping," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 24-50, January.
    10. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
    11. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    12. Yi Liu & Veronika Ročková & Yuexi Wang, 2021. "Variable selection with ABC Bayesian forests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 453-481, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:043:i14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.