IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v055i11.html
   My bibliography  Save this article

Hybrids of Gibbs Point Process Models and Their Implementation

Author

Listed:
  • Baddeley, Adrian
  • Turner, Rolf
  • Mateu, Jorge
  • Bevan, Andrew

Abstract

We describe a simple way to construct new statistical models for spatial point pattern data. Taking two or more existing models (finite Gibbs spatial point processes) we multiply the probability densities together and renormalise to obtain a new probability density. We call the resulting model a hybrid. We discuss stochastic properties of hybrids, their statistical implications, statistical inference, computational strategies and software implementation in the R package spatstat. Hybrids are particularly useful for constructing models which exhibit interaction at different spatial scales. The methods are demonstrated on a real data set on human social interaction. Software and data are provided.

Suggested Citation

  • Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
  • Handle: RePEc:jss:jstsof:v:055:i11
    DOI: http://hdl.handle.net/10.18637/jss.v055.i11
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v055i11/v55i11.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/spatstat_1.34-1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/v55i11.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/pairwise.Rnw
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/pairwise.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/simexpt.Rnw
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/simexpt.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/gordon.Rnw
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v055i11/gordon.pdf
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v055.i11?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jens Jensen & Hans Künsch, 1994. "On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 475-486, September.
    2. Nicolas Picard & Avner Bar‐Hen & Frédéric Mortier & Joël Chadœuf, 2009. "The Multi‐scale Marked Area‐interaction Point Process: A Model for the Spatial Pattern of Trees," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 23-41, March.
    3. Bo-Cheng Wei & Jian-Qing Shi & Wing-Kam Fung & Yue-Qing Hu, 1998. "Testing for Varying Dispersion in Exponential Family Nonlinear Models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 277-294, June.
    4. Kasper K. Berthelsen & Jesper Møller, 2003. "Likelihood and Non‐parametric Bayesian MCMC Inference for Spatial Point Processes Based on Perfect Simulation and Path Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 549-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    2. Yolanda Caballero & Ramón Giraldo & Jorge Mateu, 2022. "A spatial randomness test based on the box-counting dimension," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 499-524, September.
    3. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    4. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    5. Ninna Vihrs & Jesper Møller & Alan E. Gelfand, 2022. "Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 185-210, March.
    6. José Ramón Martínez Batlle & Yntze van der Hoek, 2018. "Clusters of high abundance of plants detected from local indicators of spatial association (LISA) in a semi-deciduous tropical forest," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.
    2. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    3. repec:jss:jstsof:12:i06 is not listed on IDEAS
    4. Andrea Pallini, 2000. "Resampling configurations of points through coding schemes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 9(1), pages 159-182, January.
    5. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2010. "Testing for varying zero-inflation and dispersion in generalized Poisson regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1509-1522.
    6. Mariana C. Araújo & Audrey H. M. A. Cysneiros & Lourdes C. Montenegro, 2020. "Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models," Statistical Papers, Springer, vol. 61(1), pages 167-188, February.
    7. Chun-Zheng Cao & Jin-Guan Lin & Li-Xing Zhu, 2010. "Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors," Statistical Papers, Springer, vol. 51(4), pages 813-836, December.
    8. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    9. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    10. Omerovic, Sanela & Friedl, Herwig & Grün, Bettina, 2022. "Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models," Econometrics and Statistics, Elsevier, vol. 22(C), pages 124-135.
    11. Crudu, Federico & Osorio, Felipe, 2020. "Bilinear form test statistics for extremum estimation," Economics Letters, Elsevier, vol. 187(C).
    12. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    13. Fuchun Huang & Yosihiko Ogata, 2002. "Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 1-18, March.
    14. Chen, Shyh-Huei & Ip, Edward H. & Wang, Yuchung J., 2011. "Gibbs ensembles for nearly compatible and incompatible conditional models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1760-1769, April.
    15. Luigi Augugliaro & Angelo M. Mineo & Ernst C. Wit, 2013. "Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 471-498, June.
    16. Jin-Guan Lin & Li-Xing Zhu & Feng-Chang Xie, 2009. "Heteroscedasticity diagnostics for t linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 59-77, June.
    17. Jin-Guan Lin & Li-Xing Zhu & Chun-Zheng Cao & Yong Li, 2011. "Tests of heteroscedasticity and correlation in multivariate t regression models with AR and ARMA errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1509-1531, August.
    18. Ferrari, Silvia L.P. & Cysneiros, Audrey H.M.A., 2008. "Skovgaard's adjustment to likelihood ratio tests in exponential family nonlinear models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 3047-3055, December.
    19. Artur J. Lemonte & Alexandre G. Patriota, 2011. "Influence diagnostics in Birnbaum--Saunders nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 871-884, February.
    20. Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    21. Feng-Chang Xie & Bo-Cheng Wei & Jin-Guan Lin, 2007. "Case-deletion Influence Measures for the Data from Multivariate t Distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(8), pages 907-921.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:055:i11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.