IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v40y2013i4p669-684.html
   My bibliography  Save this article

Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process

Author

Listed:
  • Jean-François Coeurjolly
  • Ege Rubak

Abstract

No abstract is available for this item.

Suggested Citation

  • Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.
  • Handle: RePEc:bla:scjsta:v:40:y:2013:i:4:p:669-684
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12017
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jens Jensen & Hans Künsch, 1994. "On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 475-486, September.
    2. Kasper K. Berthelsen & Jesper Møller, 2003. "Likelihood and Non‐parametric Bayesian MCMC Inference for Spatial Point Processes Based on Perfect Simulation and Path Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 549-564, September.
    3. A. Baddeley & J. Møller & A. Pakes, 2008. "Properties of residuals for spatial point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 627-649, September.
    4. A. Baddeley & R. Turner & J. Møller & M. Hazelton, 2005. "Residual analysis for spatial point processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 617-666, November.
    5. Jean-Franois Coeurjolly & David Dereudre & Rémy Drouilhet & Frédéric Lavancier, 2012. "Takacs–Fiksel Method for Stationary Marked Gibbs Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(3), pages 416-443, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    2. Ian Flint & Nick Golding & Peter Vesk & Yan Wang & Aihua Xia, 2022. "The saturated pairwise interaction Gibbs point process as a joint species distribution model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1721-1752, November.
    3. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    4. Miguel Gómez-Antonio & Stuart Sweeney, 2021. "Testing the role of intra-metropolitan local factors on knowledge-intensive industries’ location choices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 66(3), pages 699-728, June.
    5. Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    2. Coeurjolly, Jean-François, 2015. "Almost sure behavior of functionals of stationary Gibbs point processes," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 241-246.
    3. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    4. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    5. Ottmar Cronie & Mehdi Moradi & Christophe A N Biscio, 2024. "A cross-validation-based statistical theory for point processes," Biometrika, Biometrika Trust, vol. 111(2), pages 625-641.
    6. Tonglin Zhang & Ge Lin, 2009. "Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 65(2), pages 353-360, June.
    7. Heinrich Lothar & Klein Stella, 2011. "Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 359-387, December.
    8. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    9. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    10. Andrew J Edelman, 2012. "Positive Interactions between Desert Granivores: Localized Facilitation of Harvester Ants by Kangaroo Rats," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-9, February.
    11. Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.
    12. repec:jss:jstsof:12:i06 is not listed on IDEAS
    13. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    14. Andrea Pallini, 2000. "Resampling configurations of points through coding schemes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 9(1), pages 159-182, January.
    15. Coeurjolly, Jean-François & Reynaud-Bouret, Patricia, 2019. "A concentration inequality for inhomogeneous Neyman–Scott point processes," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 30-34.
    16. Tonglin Zhang & Ge Lin, 2008. "Identification of local clusters for count data: a model-based Moran's I test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 293-306.
    17. Davidson, Marty, 2024. "Strategic Point Processes," OSF Preprints g5r9t, Center for Open Science.
    18. Jean-François Coeurjolly, 2017. "Median-based estimation of the intensity of a spatial point process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 303-331, April.
    19. Shaochuan Lu, 2012. "Markov modulated Poisson process associated with state-dependent marks and its applications to the deep earthquakes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 87-106, February.
    20. Lothar Heinrich & Stella Klein, 2014. "Central limit theorems for empirical product densities of stationary point processes," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 121-138, July.
    21. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:40:y:2013:i:4:p:669-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.