IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i3p1420-1465.html
   My bibliography  Save this article

Multivariate geometric anisotropic Cox processes

Author

Listed:
  • James S. Martin
  • David J. Murrell
  • Sofia C. Olhede

Abstract

This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from them a family of anisotropic point processes. We give conditions that make the proposed models valid. We also propose a Palm likelihood‐based inference method for this type of point process, circumventing issues of likelihood tractability. Finally we illustrate the utility of the proposed modeling framework by analyzing spatial ecological observations of plants and trees in the Barro Colorado Island data.

Suggested Citation

  • James S. Martin & David J. Murrell & Sofia C. Olhede, 2023. "Multivariate geometric anisotropic Cox processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1420-1465, September.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1420-1465
    DOI: 10.1111/sjos.12640
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12640
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mari Myllymäki & Tomáš Mrkvička & Pavel Grabarnik & Henri Seijo & Ute Hahn, 2017. "Global envelope tests for spatial processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 381-404, March.
    2. Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
    3. Jesper Møller & Håkon Toftaker, 2014. "Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 414-435, June.
    4. Wentao Li & Paul Fearnhead, 2018. "On the asymptotic efficiency of approximate Bayesian computation estimators," Biometrika, Biometrika Trust, vol. 105(2), pages 285-299.
    5. Claudia Redenbach & Aila Särkkä & Johannes Freitag & Katja Schladitz, 2009. "Anisotropy analysis of pressed point processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(3), pages 237-261, September.
    6. Mugglestone, Moira A. & Renshaw, Eric, 1996. "A practical guide to the spectral analysis of spatial point processes," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 43-65, January.
    7. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    8. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    9. Jean-François Coeurjolly & Jesper Møller & Rasmus Waagepetersen, 2017. "A Tutorial on Palm Distributions for Spatial Point Processes," International Statistical Review, International Statistical Institute, vol. 85(3), pages 404-420, December.
    10. Rasmus Waagepetersen, 2008. "Estimating functions for inhomogeneous spatial point processes with incomplete covariate data," Biometrika, Biometrika Trust, vol. 95(2), pages 351-363.
    11. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    12. Kukush, Alexander & Markovsky, Ivan & Van Huffel, Sabine, 2004. "Consistent estimation in an implicit quadratic measurement error model," Computational Statistics & Data Analysis, Elsevier, vol. 47(1), pages 123-147, August.
    13. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    2. Victor De Oliveira & Zifei Han, 2022. "On Information About Covariance Parameters in Gaussian Matérn Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 690-712, December.
    3. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    4. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    6. Jesper Møller & Farzaneh Safavimanesh & Jakob Gulddahl Rasmussen, 2016. "The cylindrical $K$-function and Poisson line cluster point processes," Biometrika, Biometrika Trust, vol. 103(4), pages 937-954.
    7. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    8. Ismaïla Ba & Jean‐François Coeurjolly, 2023. "Inference for low‐ and high‐dimensional inhomogeneous Gibbs point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 993-1021, September.
    9. Guinness, Joseph & Fuentes, Montserrat, 2016. "Isotropic covariance functions on spheres: Some properties and modeling considerations," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 143-152.
    10. Zhou, Yuzhen & Xiao, Yimin, 2018. "Joint asymptotics for estimating the fractal indices of bivariate Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 56-72.
    11. Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.
    12. Ninna Vihrs & Jesper Møller & Alan E. Gelfand, 2022. "Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 185-210, March.
    13. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    14. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    15. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    16. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    17. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    18. Johan Debayle & Vesna Gotovac Ðogaš & Kateřina Helisová & Jakub Staněk & Markéta Zikmundová, 2021. "Assessing Similarity of Random sets via Skeletons," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 471-490, June.
    19. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    20. Eric Yanchenko & Howard D. Bondell & Brian J. Reich, 2024. "Spatial regression modeling via the R2D2 framework," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:3:p:1420-1465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.