IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v65y2016i1p77-96.html
   My bibliography  Save this article

Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes

Author

Listed:
  • Rasmus Waagepetersen
  • Yongtao Guan
  • Abdollah Jalilian
  • Jorge Mateu

Abstract

type="main" xml:id="rssc12108-abs-0001"> Multivariate log-Gaussian Cox processes are flexible models for multivariate point patterns. However, they have so far been applied in bivariate cases only. We move beyond the bivariate case to model multispecies point patterns of tree locations. In particular we address the problems of identifying parsimonious models and of extracting biologically relevant information from the models fitted. The latent multivariate Gaussian field is decomposed into components given in terms of random fields common to all species and components which are species specific. This allows a decomposition of variance that can be used to quantify to what extent the spatial variation of a species is governed by common or species-specific factors. Cross-validation is used to select the number of common latent fields to obtain a suitable trade-off between parsimony and fit of the data. The selected number of common latent fields provides an index of complexity of the multivariate covariance structure. Hierarchical clustering is used to identify groups of species with similar patterns of dependence on the common latent fields.

Suggested Citation

  • Rasmus Waagepetersen & Yongtao Guan & Abdollah Jalilian & Jorge Mateu, 2016. "Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(1), pages 77-96, January.
  • Handle: RePEc:bla:jorssc:v:65:y:2016:i:1:p:77-96
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2016.65.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
    2. Ian Flint & Nick Golding & Peter Vesk & Yan Wang & Aihua Xia, 2022. "The saturated pairwise interaction Gibbs point process as a joint species distribution model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1721-1752, November.
    3. Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
    4. Abdollah Jalilian & Jorge Mateu, 2023. "Assessing similarities between spatial point patterns with a Siamese neural network discriminant model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 21-42, March.
    5. María P. Frías & Antoni Torres-Signes & María D. Ruiz-Medina & Jorge Mateu, 2022. "Spatial Cox processes in an infinite-dimensional framework," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 175-203, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:65:y:2016:i:1:p:77-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.