My bibliography
Save this item
The random forest algorithm for statistical learning
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
- Gang Wang, 2024. "Disaster relief supply chain network planning under uncertainty," Annals of Operations Research, Springer, vol. 338(2), pages 1127-1156, July.
- Gerard J. van den Berg & Sarah Bernhard & Gesine Stephan & Arne Uhlendorff, 2024.
"Investigating the Impact of Integration Agreements on Labor Market Outcomes for Welfare Recipients: A Randomized Controlled Trial,"
Working Papers
2024-12, Center for Research in Economics and Statistics.
- van den Berg, Gerard J. & Bernhard, Sarah & Stephan, Gesine & Uhlendorff, Arne, 2024. "Investigating the Impact of Integration Agreements on Labor Market Outcomes for Welfare Recipients: A Randomized Controlled Trial," IZA Discussion Papers 17470, Institute of Labor Economics (IZA).
- Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
- Yuanxiu Wang, 2024. "Mutual-Energy Inner Product Optimization Method for Constructing Feature Coordinates and Image Classification in Machine Learning," Mathematics, MDPI, vol. 12(23), pages 1-32, December.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024.
"ddml: Double/debiased machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
- Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann & Achim Ahrens, 2022. "ddml: Double/debiased machine learning in Stata," Swiss Stata Conference 2022 02, Stata Users Group.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2023. "ddml: Double/Debiased Machine Learning in Stata," IZA Discussion Papers 15963, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2023. "ddml: Double/debiased machine learning in Stata," Papers 2301.09397, arXiv.org, revised Jan 2024.
- Becker, Sascha O. & Voth, Hans-Joachim, 2023.
"From the Death of God to the Rise of Hitler,"
IZA Discussion Papers
16538, Institute of Labor Economics (IZA).
- Sascha O. Becker & Hans-Joachim Voth, 2023. "From the Death of God to the Rise of Hitler," CESifo Working Paper Series 10730, CESifo.
- Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CEPR Discussion Papers 18543, C.E.P.R. Discussion Papers.
- Sascha O. Becker & Hans-Joachim Voth, 2023. "From the Death of God to the Rise of Hitler," CEH Discussion Papers 03, Centre for Economic History, Research School of Economics, Australian National University.
- Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CAGE Online Working Paper Series 688, Competitive Advantage in the Global Economy (CAGE).
- Hillebrecht, Michael & Klonner, Stefan & Pacere, Noraogo A., 2020. "Dynamic Properties of Poverty Targeting," Working Papers 0696, University of Heidelberg, Department of Economics.
- Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
- Gordeev, Stepan & Steinbach, Sandro, 2024. "Determinants of PTA design: Insights from machine learning," International Economics, Elsevier, vol. 178(C).
- Forbes, Kevin F., 2023. "Demand for grid-supplied electricity in the presence of distributed solar energy resources: Evidence from New York City," Utilities Policy, Elsevier, vol. 80(C).
- Minglu Qin & Haibin Xu & Jiantuan Huang, 2024. "Investigating the Impact of Streetscape and Land Surface Temperature on Cycling Behavior," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
- David Simon & Aaron Sojourner & Jon Pedersen & Heidi Ombisa Skallet, 2024.
"Financial Incentives for Adoption and Kin Guardianship Improve Achievement for Foster Children,"
Upjohn Working Papers
24-401, W.E. Upjohn Institute for Employment Research.
- David Simon & Aaron Sojourner & Jon Pedersen & Heidi Ombisa Skallet, 2024. "Financial Incentives for Adoption and Kin Guardianship Improve Achievement for Foster Children," NBER Working Papers 32560, National Bureau of Economic Research, Inc.
- Simon, David & Sojourner, Aaron & Pedersen, Jon & Ombisa Skallet, Heidi, 2024. "Financial Incentives for Adoption and Kin Guardianship Improve Achievement for Foster Children," IZA Discussion Papers 17057, Institute of Labor Economics (IZA).
- Natalia Pecorari & Jose Cuesta, 2024. "Citizen Participation and Political Trust in Latin America and the Caribbean: A Machine Learning Approach," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 36(5), pages 1227-1252, October.
- Young Jae Kim, 2021. "Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
- Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
- Kang, Lili & Zhao, Guangchuan, 2022. "Financial support for unmet need for personal assistance with daily activities: Implications from China's long-term care insurance pilots," Finance Research Letters, Elsevier, vol. 45(C).
- Hong Pan & Jie Yang & Yang Yu & Yuan Zheng & Xiaonan Zheng & Chenyang Hang, 2024. "Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
- Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
- Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
- Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2023.
"pystacked: Stacking generalization and machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 23(4), pages 909-931, December.
- Christian B. Hansen & Mark E. Schaffer & Achim Ahrens, 2022. "pystacked: Stacking generalization and machine learning in Stata," Swiss Stata Conference 2022 01, Stata Users Group.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2022. "pystacked: Stacking generalization and machine learning in Stata," Papers 2208.10896, arXiv.org, revised Mar 2023.
- Indrawan Nugrahanto & Hariyanto Gunawan & Hsing-Yu Chen, 2024. "Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
- Virginia Negri & Alessandro Mingotti & Roberto Tinarelli & Lorenzo Peretto, 2023. "Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks," Energies, MDPI, vol. 16(1), pages 1-20, January.
- Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
- Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
- Xue, Shaobo & Ma, Bo & Wang, Chenguang & Li, Zhanbin, 2023. "Identifying key landscape pattern indices influencing the NPP: A case study of the upper and middle reaches of the Yellow River," Ecological Modelling, Elsevier, vol. 484(C).
- Julien Champagne & Émilien Gouin-Bonenfant, 2022. "Monetary Policy, Credit Constraints and SME Employment," Staff Working Papers 22-49, Bank of Canada.
- Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
- Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
- Merike Kukk & Jaanika Meriküll & Tairi Rõõm, 2023. "The Gender Wealth Gap in Europe: Application of Machine Learning to Predict Individual‐level Wealth," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 289-317, June.
- Zhennan Wu, 2022. "Using Machine Learning Approach to Evaluate the Excessive Financialization Risks of Trading Enterprises," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1607-1625, April.
- İbrahim Özmen & Şerife Özşahin, 2023. "Effects of global energy and price fluctuations on Turkey's inflation: new evidence," Economic Change and Restructuring, Springer, vol. 56(4), pages 2695-2728, August.
- Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.
- Tymoteusz Miller & Grzegorz Mikiciuk & Anna Kisiel & Małgorzata Mikiciuk & Dominika Paliwoda & Lidia Sas-Paszt & Danuta Cembrowska-Lech & Adrianna Krzemińska & Agnieszka Kozioł & Adam Brysiewicz, 2023. "Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
- MD. Nahid Hasan & Kazi Shadman Sakib & Taghrid Tahani Preeti & Jeza Allohibi & Abdulmajeed Atiah Alharbi & Jia Uddin, 2024. "OLF-ML: An Offensive Language Framework for Detection, Categorization, and Offense Target Identification Using Text Processing and Machine Learning Algorithms," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
- Jialing Zhang & Zhanxu Chen & An Wang & Zhenzhang Li & Wei Wan, 2023. "Intelligent Personalized Lighting Control System for Residents," Sustainability, MDPI, vol. 15(21), pages 1-12, October.
- Sebastián Rodríguez & Pablo Cabrera-Barona, 2024. "A machine learning-based assessment of subjective quality of life," Journal of Computational Social Science, Springer, vol. 7(1), pages 451-467, April.
- Lee, Seungmin & Barrett, Christopher B. & Hoddinott, John F., 2021. "Food Security Dynamics in the United States, 2001-2017," Working Papers 316604, Cornell University, Department of Applied Economics and Management.
- Adam Kula & Albert Smalcerz & Maciej Sajkowski & Zygmunt Kamiński, 2021. "Analysis of Office Rooms Energy Consumption Data in Respect to Meteorological and Direct Sun Exposure Conditions," Energies, MDPI, vol. 14(22), pages 1-20, November.
- Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
- Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
- Ernesto Dal Bo & Frederico Finan & Olle Folke & Torsten Persson & Johanna Rickne, 2023. "Economic and Social Outsiders but Political Insiders: Sweden’s Populist Radical Right," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(2), pages 675-706.
- Xin Wang & Xiwen Bao & Ziao Ge & Jiayao Xi & Yinghui Zhao, 2024. "Identification and Redevelopment of Inefficient Residential Landuse in Urban Areas: A Case Study of Ring Expressway Area in Harbin City of China," Land, MDPI, vol. 13(8), pages 1-24, August.
- Wang, Sicheng & Noland, Robert B., 2021. "What is the elasticity of sharing a ridesourcing trip?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 284-305.
- Almudena Sanjurjo-de-No & Ana María Pérez-Zuriaga & Alfredo García, 2023. "Factors Influencing the Pedestrian Injury Severity of Micromobility Crashes," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
- Uttam Khatri & Ji-In Kim & Goo-Rak Kwon, 2023. "Genetics Information with Functional Brain Networks for Dementia Classification," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
- Ghaemi, Ali & Safari, Amin & Quteishat, Anas & Younis, Mahmoud A., 2024. "A stacking-based fault forecasting study for power transmission lines under different weather conditions," Energy, Elsevier, vol. 306(C).