IDEAS home Printed from https://ideas.repec.org/r/tsj/stataj/v20y2020i1p3-29.html
   My bibliography  Save this item

The random forest algorithm for statistical learning

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
  2. Gang Wang, 2024. "Disaster relief supply chain network planning under uncertainty," Annals of Operations Research, Springer, vol. 338(2), pages 1127-1156, July.
  3. Gerard J. van den Berg & Sarah Bernhard & Gesine Stephan & Arne Uhlendorff, 2024. "Investigating the Impact of Integration Agreements on Labor Market Outcomes for Welfare Recipients: A Randomized Controlled Trial," Working Papers 2024-12, Center for Research in Economics and Statistics.
  4. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
  5. Yuanxiu Wang, 2024. "Mutual-Energy Inner Product Optimization Method for Constructing Feature Coordinates and Image Classification in Machine Learning," Mathematics, MDPI, vol. 12(23), pages 1-32, December.
  6. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "ddml: Double/debiased machine learning in Stata," Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
  7. Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," IZA Discussion Papers 16538, Institute of Labor Economics (IZA).
  8. Hillebrecht, Michael & Klonner, Stefan & Pacere, Noraogo A., 2020. "Dynamic Properties of Poverty Targeting," Working Papers 0696, University of Heidelberg, Department of Economics.
  9. Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
  10. Gordeev, Stepan & Steinbach, Sandro, 2024. "Determinants of PTA design: Insights from machine learning," International Economics, Elsevier, vol. 178(C).
  11. Forbes, Kevin F., 2023. "Demand for grid-supplied electricity in the presence of distributed solar energy resources: Evidence from New York City," Utilities Policy, Elsevier, vol. 80(C).
  12. Minglu Qin & Haibin Xu & Jiantuan Huang, 2024. "Investigating the Impact of Streetscape and Land Surface Temperature on Cycling Behavior," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
  13. David Simon & Aaron Sojourner & Jon Pedersen & Heidi Ombisa Skallet, 2024. "Financial Incentives for Adoption and Kin Guardianship Improve Achievement for Foster Children," Upjohn Working Papers 24-401, W.E. Upjohn Institute for Employment Research.
  14. Natalia Pecorari & Jose Cuesta, 2024. "Citizen Participation and Political Trust in Latin America and the Caribbean: A Machine Learning Approach," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 36(5), pages 1227-1252, October.
  15. Young Jae Kim, 2021. "Machine Learning Models for Sarcopenia Identification Based on Radiomic Features of Muscles in Computed Tomography," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
  16. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
  17. Kang, Lili & Zhao, Guangchuan, 2022. "Financial support for unmet need for personal assistance with daily activities: Implications from China's long-term care insurance pilots," Finance Research Letters, Elsevier, vol. 45(C).
  18. Hong Pan & Jie Yang & Yang Yu & Yuan Zheng & Xiaonan Zheng & Chenyang Hang, 2024. "Intelligent Low-Consumption Optimization Strategies: Economic Operation of Hydropower Stations Based on Improved LSTM and Random Forest Machine Learning Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
  19. Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
  20. Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
  21. Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
  22. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2023. "pystacked: Stacking generalization and machine learning in Stata," Stata Journal, StataCorp LP, vol. 23(4), pages 909-931, December.
  23. Indrawan Nugrahanto & Hariyanto Gunawan & Hsing-Yu Chen, 2024. "Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
  24. Virginia Negri & Alessandro Mingotti & Roberto Tinarelli & Lorenzo Peretto, 2023. "Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks," Energies, MDPI, vol. 16(1), pages 1-20, January.
  25. Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
  26. Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
  27. Xue, Shaobo & Ma, Bo & Wang, Chenguang & Li, Zhanbin, 2023. "Identifying key landscape pattern indices influencing the NPP: A case study of the upper and middle reaches of the Yellow River," Ecological Modelling, Elsevier, vol. 484(C).
  28. Julien Champagne & Émilien Gouin-Bonenfant, 2022. "Monetary Policy, Credit Constraints and SME Employment," Staff Working Papers 22-49, Bank of Canada.
  29. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
  30. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
  31. Merike Kukk & Jaanika Meriküll & Tairi Rõõm, 2023. "The Gender Wealth Gap in Europe: Application of Machine Learning to Predict Individual‐level Wealth," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(2), pages 289-317, June.
  32. Zhennan Wu, 2022. "Using Machine Learning Approach to Evaluate the Excessive Financialization Risks of Trading Enterprises," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1607-1625, April.
  33. İbrahim Özmen & Şerife Özşahin, 2023. "Effects of global energy and price fluctuations on Turkey's inflation: new evidence," Economic Change and Restructuring, Springer, vol. 56(4), pages 2695-2728, August.
  34. Jia-Qi, Liu & Yun-Wen, Feng & Da, Teng & Jun-Yu, Chen & Cheng, Lu, 2023. "Operational reliability evaluation and analysis framework of civil aircraft complex system based on intelligent extremum machine learning model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  35. Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.
  36. Tymoteusz Miller & Grzegorz Mikiciuk & Anna Kisiel & Małgorzata Mikiciuk & Dominika Paliwoda & Lidia Sas-Paszt & Danuta Cembrowska-Lech & Adrianna Krzemińska & Agnieszka Kozioł & Adam Brysiewicz, 2023. "Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
  37. MD. Nahid Hasan & Kazi Shadman Sakib & Taghrid Tahani Preeti & Jeza Allohibi & Abdulmajeed Atiah Alharbi & Jia Uddin, 2024. "OLF-ML: An Offensive Language Framework for Detection, Categorization, and Offense Target Identification Using Text Processing and Machine Learning Algorithms," Mathematics, MDPI, vol. 12(13), pages 1-18, July.
  38. Jialing Zhang & Zhanxu Chen & An Wang & Zhenzhang Li & Wei Wan, 2023. "Intelligent Personalized Lighting Control System for Residents," Sustainability, MDPI, vol. 15(21), pages 1-12, October.
  39. Sebastián Rodríguez & Pablo Cabrera-Barona, 2024. "A machine learning-based assessment of subjective quality of life," Journal of Computational Social Science, Springer, vol. 7(1), pages 451-467, April.
  40. Lee, Seungmin & Barrett, Christopher B. & Hoddinott, John F., 2021. "Food Security Dynamics in the United States, 2001-2017," Working Papers 316604, Cornell University, Department of Applied Economics and Management.
  41. Adam Kula & Albert Smalcerz & Maciej Sajkowski & Zygmunt Kamiński, 2021. "Analysis of Office Rooms Energy Consumption Data in Respect to Meteorological and Direct Sun Exposure Conditions," Energies, MDPI, vol. 14(22), pages 1-20, November.
  42. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
  43. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
  44. Ernesto Dal Bo & Frederico Finan & Olle Folke & Torsten Persson & Johanna Rickne, 2023. "Economic and Social Outsiders but Political Insiders: Sweden’s Populist Radical Right," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(2), pages 675-706.
  45. Xin Wang & Xiwen Bao & Ziao Ge & Jiayao Xi & Yinghui Zhao, 2024. "Identification and Redevelopment of Inefficient Residential Landuse in Urban Areas: A Case Study of Ring Expressway Area in Harbin City of China," Land, MDPI, vol. 13(8), pages 1-24, August.
  46. Wang, Sicheng & Noland, Robert B., 2021. "What is the elasticity of sharing a ridesourcing trip?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 284-305.
  47. Almudena Sanjurjo-de-No & Ana María Pérez-Zuriaga & Alfredo García, 2023. "Factors Influencing the Pedestrian Injury Severity of Micromobility Crashes," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
  48. Uttam Khatri & Ji-In Kim & Goo-Rak Kwon, 2023. "Genetics Information with Functional Brain Networks for Dementia Classification," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
  49. Ghaemi, Ali & Safari, Amin & Quteishat, Anas & Younis, Mahmoud A., 2024. "A stacking-based fault forecasting study for power transmission lines under different weather conditions," Energy, Elsevier, vol. 306(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.