IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i1p470-d1022212.html
   My bibliography  Save this article

Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks

Author

Listed:
  • Virginia Negri

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Alessandro Mingotti

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Roberto Tinarelli

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

  • Lorenzo Peretto

    (Department of Electrical, Electronic and Information Engineering, Guglielmo Marconi Alma Mater Studiorum, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy)

Abstract

Electrical utilities and system operators (SOs) are constantly looking for solutions to problems in the management and control of the power network. For this purpose, SOs are exploring new research fields, which might bring contributions to the power system environment. A clear example is the field of computer science, within which artificial intelligence (AI) has been developed and is being applied to many fields. In power systems, AI could support the fault prediction of cable joints. Despite the availability of many legacy methods described in the literature, fault prediction is still critical, and it needs new solutions. For this purpose, in this paper, the authors made a further step in the evaluation of machine learning methods (ML) for cable joint health assessment. Six ML algorithms have been compared and assessed on a consolidated test scenario. It simulates a distributed measurement system which collects measurements from medium-voltage (MV) cable joints. Typical metrics have been applied to compare the performance of the algorithms. The analysis is then completed considering the actual in-field conditions and the SOs’ requirements. The results demonstrate: (i) the pros and cons of each algorithm; (ii) the best-performing algorithm; (iii) the possible benefits from the implementation of ML algorithms.

Suggested Citation

  • Virginia Negri & Alessandro Mingotti & Roberto Tinarelli & Lorenzo Peretto, 2023. "Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks," Energies, MDPI, vol. 16(1), pages 1-20, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:470-:d:1022212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Birk Jones & Matthew Lave & William Vining & Brooke Marshall Garcia, 2021. "Uncontrolled Electric Vehicle Charging Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial or Industrial Loads," Energies, MDPI, vol. 14(6), pages 1-16, March.
    2. Li Zhang & Xiyue LuoYang & Yanjie Le & Fan Yang & Chun Gan & Yinxian Zhang, 2018. "A Thermal Probability Density–Based Method to Detect the Internal Defects of Power Cable Joints," Energies, MDPI, vol. 11(7), pages 1-13, June.
    3. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    4. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LP, vol. 20(1), pages 3-29, March.
    5. Jianjing Qu & Yanan Zhao & Yongping Xie, 2022. "Artificial intelligence leads the reform of education models," Systems Research and Behavioral Science, Wiley Blackwell, vol. 39(3), pages 581-588, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
    2. Billerbeck, Anna & Breitschopf, Barbara & Winkler, Jenny & Bürger, Veit & Köhler, Benjamin & Bacquet, Alexandre & Popovski, Eftim & Fallahnejad, Mostafa & Kranzl, Lukas & Ragwitz, Mario, 2023. "Policy frameworks for district heating: A comprehensive overview and analysis of regulations and support measures across Europe," Energy Policy, Elsevier, vol. 173(C).
    3. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    4. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
    5. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    6. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).
    7. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
    8. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    9. Meus, Jelle & De Vits, Sarah & S'heeren, Nele & Delarue, Erik & Proost, Stef, 2021. "Renewable electricity support in perfect markets: Economic incentives under diverse subsidy instruments," Energy Economics, Elsevier, vol. 94(C).
    10. Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
    11. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    12. Sascha O. Becker & Hans-Joachim Voth, 2023. "From the Death of God to the Rise of Hitler," CESifo Working Paper Series 10730, CESifo.
    13. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    14. Zhouquan Wu & Bo Chen, 2021. "Distributed Electric Vehicle Charging Scheduling with Transactive Energy Management," Energies, MDPI, vol. 15(1), pages 1-16, December.
    15. Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
    16. Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
    17. Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
    18. Seong-Hoon Lee & Yonghun Jung, 2018. "Causal dynamics between renewable energy consumption and economic growth in South Korea: Empirical analysis and policy implications," Energy & Environment, , vol. 29(7), pages 1298-1315, November.
    19. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
    20. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:1:p:470-:d:1022212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.