IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i2d10.1007_s10479-024-05933-6.html
   My bibliography  Save this article

Disaster relief supply chain network planning under uncertainty

Author

Listed:
  • Gang Wang

    (University of Massachusetts Dartmouth)

Abstract

Supply chain planning during disasters can be challenging due to uncertainty in demand and travel time, leading to limited stocks and delivery delays. While previous studies have focused on network planning for disaster relief supply chains under uncertainty, they have not fully integrated all network components while considering various potential factors. This integration is crucial for successful humanitarian relief operations. To address this issue, we propose a comprehensive model using a two-stage mixed-integer stochastic linear programming. The model incorporates facility location, pre-positioning, direct allocation, and multi-depot vehicle routing under demand and travel time uncertainties while examining multi-echelon, multi-commodity, response deadlines, and deprivation costs. We also create an improved random forest algorithm to enhance the accuracy of demand and travel time forecasts. To obtain accurate information for effective decision-making, we develop a data-driven, exact algorithm by combining an improved random forest algorithm and Benders decomposition. Computational experiments show that our proposed algorithm outperforms the L-shaped method in finding a better solution with less running time. We provide a real case to validate our model and algorithms. Our model and solution scheme can help improve efficiency and timeliness while minimizing deficiencies in disaster relief efforts.

Suggested Citation

  • Gang Wang, 2024. "Disaster relief supply chain network planning under uncertainty," Annals of Operations Research, Springer, vol. 338(2), pages 1127-1156, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-05933-6
    DOI: 10.1007/s10479-024-05933-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05933-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05933-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-05933-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.