IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3872-d1539971.html
   My bibliography  Save this article

Mutual-Energy Inner Product Optimization Method for Constructing Feature Coordinates and Image Classification in Machine Learning

Author

Listed:
  • Yuanxiu Wang

    (Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA)

Abstract

As a key task in machine learning, data classification is essential to find a suitable coordinate system to represent the data features of different classes of samples. This paper proposes the mutual-energy inner product optimization method for constructing a feature coordinate system. First, by analyzing the solution space and eigenfunctions of the partial differential equations describing a non-uniform membrane, the mutual-energy inner product is defined. Second, by expressing the mutual-energy inner product as a series of eigenfunctions, it shows the significant advantage of enhancing low-frequency features and suppressing high-frequency noise, compared to the Euclidean inner product. And then, a mutual-energy inner product optimization model is built to extract the data features, and the convexity and concavity properties of its objective function are discussed. Next, by combining the finite element method, a stable and efficient sequential linearization algorithm is constructed to solve the optimization model. This algorithm only solves positive definite symmetric matrix equations and linear programming with a few constraints, and its vectorized implementation is discussed. Finally, the mutual-energy inner product optimization method is used to construct feature coordinates, and multi-class Gaussian classifiers are trained on the MINST training set. Good prediction results of the Gaussian classifiers are achieved on the MINST test set.

Suggested Citation

  • Yuanxiu Wang, 2024. "Mutual-Energy Inner Product Optimization Method for Constructing Feature Coordinates and Image Classification in Machine Learning," Mathematics, MDPI, vol. 12(23), pages 1-32, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3872-:d:1539971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LP, vol. 20(1), pages 3-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
    2. Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
    3. Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
    4. Sascha O. Becker & Hans-Joachim Voth, 2023. "From the Death of God to the Rise of Hitler," CESifo Working Paper Series 10730, CESifo.
    5. Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
    6. Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
    7. Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
    8. Murat Aslan & Onder Ozgur, 2024. "Financial dollarization and its effects on inflation and output in Turkey: a machine learning approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5777-5804, December.
    9. Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
    10. Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
    11. Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
    12. Jialing Zhang & Zhanxu Chen & An Wang & Zhenzhang Li & Wei Wan, 2023. "Intelligent Personalized Lighting Control System for Residents," Sustainability, MDPI, vol. 15(21), pages 1-12, October.
    13. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    14. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
    15. Jianghong Xu & Wei Lu & Weixin Wang, 2024. "From “fragile smallholders” to “resilient smallholders”: measuring rural household resilience in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    16. Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
    17. Forbes, Kevin F., 2023. "Demand for grid-supplied electricity in the presence of distributed solar energy resources: Evidence from New York City," Utilities Policy, Elsevier, vol. 80(C).
    18. David Simon & Aaron Sojourner & Jon Pedersen & Heidi Ombisa Skallet, 2024. "Financial Incentives for Adoption and Kin Guardianship Improve Achievement for Foster Children," Upjohn Working Papers 24-401, W.E. Upjohn Institute for Employment Research.
    19. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "ddml: Double/debiased machine learning in Stata," Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
    20. Virginia Negri & Alessandro Mingotti & Roberto Tinarelli & Lorenzo Peretto, 2023. "Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks," Energies, MDPI, vol. 16(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3872-:d:1539971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.