Machine Learning Approaches for Forecasting the Best Microbial Strains to Alleviate Drought Impact in Agriculture
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bogumił Kamiński & Michał Jakubczyk & Przemysław Szufel, 2018. "A framework for sensitivity analysis of decision trees," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 135-159, March.
- Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LP, vol. 20(1), pages 3-29, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
- Deac Dan Stelian & Schebesch Klaus Bruno, 2018. "Market Forecasts and Client Behavioral Data: Towards Finding Adequate Model Complexity," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 28(3), pages 50-75, September.
- Wang, Feipeng & Wong, Wing-Keung & Wang, Zheng & Albasher, Gadah & Alsultan, Nouf & Fatemah, Ambreen, 2023. "Emerging pathways to sustainable economic development: An interdisciplinary exploration of resource efficiency, technological innovation, and ecosystem resilience in resource-rich regions," Resources Policy, Elsevier, vol. 85(PA).
- Ivan Miguel Pires & Faisal Hussain & Nuno M. Garcia & Petre Lameski & Eftim Zdravevski, 2020. "Homogeneous Data Normalization and Deep Learning: A Case Study in Human Activity Classification," Future Internet, MDPI, vol. 12(11), pages 1-14, November.
- Xiaxuan He & Qifeng Yuan & Yinghong Qin & Junwen Lu & Gang Li, 2024. "Analysis of Surface Urban Heat Island in the Guangzhou-Foshan Metropolitan Area Based on Local Climate Zones," Land, MDPI, vol. 13(10), pages 1-34, October.
- Sascha O. Becker & Hans-Joachim Voth, 2023.
"From the Death of God to the Rise of Hitler,"
CESifo Working Paper Series
10730, CESifo.
- Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CAGE Online Working Paper Series 688, Competitive Advantage in the Global Economy (CAGE).
- Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," CEPR Discussion Papers 18543, C.E.P.R. Discussion Papers.
- Sascha O. Becker & Hans-Joachim Voth, 2023. "From the Death of God to the Rise of Hitler," CEH Discussion Papers 03, Centre for Economic History, Research School of Economics, Australian National University.
- Becker, Sascha O. & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," IZA Discussion Papers 16538, Institute of Labor Economics (IZA).
- Ahmet Faruk Aysan & Bekir Sait Ciftler & Ibrahim Musa Unal, 2024. "Predictive Power of Random Forests in Analyzing Risk Management in Islamic Banking," JRFM, MDPI, vol. 17(3), pages 1-19, March.
- Sakiru Adebola Solarin & Muhammed Sehid Gorus & Onder Ozgur, 2024. "Modelling the economic effect of inbound birth tourism: a random forest algorithm approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4223-4240, October.
- Fieberg, Christian & Günther, Steffen & Poddig, Thorsten & Zaremba, Adam, 2024. "Non-standard errors in the cryptocurrency world," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Zhu, Xinyi & Shen, Xiaoyan & Chen, Kailiang & Zhang, Zeqing, 2024. "Research on the prediction and influencing factors of heavy duty truck fuel consumption based on LightGBM," Energy, Elsevier, vol. 296(C).
- Michelle Sapitang & Wanie M. Ridwan & Khairul Faizal Kushiar & Ali Najah Ahmed & Ahmed El-Shafie, 2020. "Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
- Maria A. F. Silva Dias & Yania Molina Souto & Bruno Biazeto & Enzo Todesco & Jose A. Zuñiga Mora & Dylana Vargas Navarro & Melvin Pérez Chinchilla & Carlos Madrigal Araya & Dayanna Arce Fernández & Be, 2024. "Reduction of Wind Speed Forecast Error in Costa Rica Tejona Wind Farm with Artificial Intelligence," Energies, MDPI, vol. 17(22), pages 1-12, November.
- Özer Depren & Mustafa Tevfik Kartal & Serpil Kılıç Depren, 2021. "Recent innovation in benchmark rates (BMR): evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-20, December.
- Tomasz Rymarczyk & Konrad Niderla & Edward Kozłowski & Krzysztof Król & Joanna Maria Wyrwisz & Sylwia Skrzypek-Ahmed & Piotr Gołąbek, 2021. "Logistic Regression with Wave Preprocessing to Solve Inverse Problem in Industrial Tomography for Technological Process Control," Energies, MDPI, vol. 14(23), pages 1-21, December.
- Jialing Zhang & Zhanxu Chen & An Wang & Zhenzhang Li & Wei Wan, 2023. "Intelligent Personalized Lighting Control System for Residents," Sustainability, MDPI, vol. 15(21), pages 1-12, October.
- Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
- Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
- Junlong Zhang & Youbin He & Yuan Zhang & Weifeng Li & Junjie Zhang, 2022. "Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China," Energies, MDPI, vol. 15(10), pages 1-15, May.
- Forbes, Kevin F., 2023. "Demand for grid-supplied electricity in the presence of distributed solar energy resources: Evidence from New York City," Utilities Policy, Elsevier, vol. 80(C).
More about this item
Keywords
machine learning; predictive analytics; soil microbiome; climate resilience; crop yield enhancement; SVM; ANN; data-driven agriculture; sustainable farming practices; crop stress management; agricultural biotechnology; artificial intelligence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1622-:d:1219213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.