IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3569-d1381933.html
   My bibliography  Save this article

Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency

Author

Listed:
  • Indrawan Nugrahanto

    (Department of Electrical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia
    Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan)

  • Hariyanto Gunawan

    (Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
    R&D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan 320314, Taiwan)

  • Hsing-Yu Chen

    (Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
    R&D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan 320314, Taiwan)

Abstract

Computer Numeric Control (CNC) five-axis milling plays a significant role in the machining of precision molds and dies, aerospace parts, consumer electronics, etc. This research aims to explore the potential of the machine learning (ML) technique in improving energy efficiency during the CNC five-axis milling process for sustainable manufacturing. The experiments with various machining parameters, forms of toolpath planning, and dry cutting conditions were carried out, and the data regarding energy consumption were collected simultaneously. The relationship between machine parameters and energy consumption was analyzed and built. Subsequently, a machine learning algorithm was developed to classify test methods and identify energy-efficient machining strategies. The developed algorithm was implemented and assessed using different classification methods based on the ML concept to effectively reduce energy consumption. The results show that the Decision Tree and Random Forest algorithms produced lower Root Mean Square Error (RMSE) values of 4.24 and 4.28, respectively, compared to Linear, Lasso, and Ridge Regression algorithms. Verification experiments were conducted to ascertain the real-world applicability and performance of the ML-based energy efficiency approach in an operational CNC five-axis milling machine. The findings not only underscore the potential of ML techniques in optimizing energy efficiency but also offer a compelling pathway towards enhanced sustainability in CNC machining operations. The developed algorithm was implemented within a simulation framework and the algorithm was rigorously assessed using machine learning analysis to effectively reduce energy consumption, all while ensuring the accuracy of the machining results and integrating both conventional and advanced regression algorithms into CNC machining processes. Manufacturers stand to realize substantial energy savings and bolster sustainability initiatives, thus exemplifying the transformative power of ML-driven optimization strategies.

Suggested Citation

  • Indrawan Nugrahanto & Hariyanto Gunawan & Hsing-Yu Chen, 2024. "Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3569-:d:1381933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LP, vol. 20(1), pages 3-29, March.
    4. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    5. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariarosaria Comunale, 2020. "The persistently high rate of suicide in Lithuania: an updated view," Bank of Lithuania Discussion Paper Series 21, Bank of Lithuania.
    2. Alessandro V. M. Oliveira & Bruno F. Oliveira & Moises D. Vassallo, 2024. "Airport service quality perception and flight delays: examining the influence of psychosituational latent traits of respondents in passenger satisfaction surveys," Papers 2401.02139, arXiv.org.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    5. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    6. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    7. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    8. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    9. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    10. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    11. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    12. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    13. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    14. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    15. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    18. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3569-:d:1381933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.