IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1124-d1346759.html
   My bibliography  Save this article

Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems

Author

Listed:
  • Wassila Tercha

    (Electrification of Industrial Enterprises Laboratory, University of Boumerdes, Boumerdes 35000, Algeria)

  • Sid Ahmed Tadjer

    (Electrification of Industrial Enterprises Laboratory, University of Boumerdes, Boumerdes 35000, Algeria)

  • Fathia Chekired

    (Unité de Développement des Équipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER, Tipaza 42004, Algeria)

  • Laurent Canale

    (CNRS, LAPLACE Laboratory, UMR 5213, 31062 Toulouse, France)

Abstract

The integration of photovoltaic (PV) systems into the global energy landscape has been boosted in recent years, driven by environmental concerns and research into renewable energy sources. The accurate prediction of temperature and solar irradiance is essential for optimizing the performance and grid integration of PV systems. Machine learning (ML) has become an effective tool for improving the accuracy of these predictions. This comprehensive review explores the pioneer techniques and methodologies employed in the field of ML-based forecasting of temperature and solar irradiance for PV systems. This article presents a comparative study between various algorithms and techniques commonly used for temperature and solar radiation forecasting. These include regression models such as decision trees, random forest, XGBoost, and support vector machines (SVM). The beginning of this article highlights the importance of accurate weather forecasts for the operation of PV systems and the challenges associated with traditional meteorological models. Next, fundamental concepts of machine learning are explored, highlighting the benefits of improved accuracy in estimating the PV power generation for grid integration.

Suggested Citation

  • Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1124-:d:1346759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    2. Wang, Guochang & Su, Yan & Shu, Lianjie, 2016. "One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models," Renewable Energy, Elsevier, vol. 96(PA), pages 469-478.
    3. Matthias Schonlau & Rosie Yuyan Zou, 2020. "The random forest algorithm for statistical learning," Stata Journal, StataCorp LP, vol. 20(1), pages 3-29, March.
    4. Ignacio J. Perez-Arriaga & Carlos Batlle, 2012. "Impacts of Intermittent Renewables on Electricity Generation System Operation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    5. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    6. Sharma, Amandeep & Kakkar, Ajay, 2018. "Forecasting daily global solar irradiance generation using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2254-2269.
    7. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    8. Adewuyi, Oludamilare Bode & Lotfy, Mohammed E. & Akinloye, Benjamin Olabisi & Rashid Howlader, Harun Or & Senjyu, Tomonobu & Narayanan, Krishna, 2019. "Security-constrained optimal utility-scale solar PV investment planning for weak grids: Short reviews and techno-economic analysis," Applied Energy, Elsevier, vol. 245(C), pages 16-30.
    9. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2022. "Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aissa Meflah & Fathia Chekired & Nadia Drir & Laurent Canale, 2024. "Accurate Method for Solar Power Generation Estimation for Different PV (Photovoltaic Panels) Technologies," Resources, MDPI, vol. 13(12), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérémy Macaire & Sara Zermani & Laurent Linguet, 2023. "New Feature Selection Approach for Photovoltaïc Power Forecasting Using KCDE," Energies, MDPI, vol. 16(19), pages 1-13, September.
    2. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    3. Sascha O. Becker, Sascha O & Voth, Hans-Joachim, 2023. "From the Death of God to the Rise of Hitler," The Warwick Economics Research Paper Series (TWERPS) 1478, University of Warwick, Department of Economics.
    4. Rauan Meirbekova & Dario Bonciani & Dagur Ingi Olafsson & Aysun Korucan & Pinar Derin-Güre & Virginie Harcouët-Menou & Wilfried Bero, 2024. "Opportunities and Challenges of Geothermal Energy: A Comparative Analysis of Three European Cases—Belgium, Iceland, and Italy," Energies, MDPI, vol. 17(16), pages 1-27, August.
    5. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    6. Ramos, J.S. & Ramos, H.M., 2009. "Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration," Energy Policy, Elsevier, vol. 37(2), pages 633-643, February.
    7. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    8. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    9. Abdul Conteh & Mohammed Elsayed Lotfy & Kiptoo Mark Kipngetich & Tomonobu Senjyu & Paras Mandal & Shantanu Chakraborty, 2019. "An Economic Analysis of Demand Side Management Considering Interruptible Load and Renewable Energy Integration: A Case Study of Freetown Sierra Leone," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
    10. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    11. Maren Helen Meyer & Sandra Dullau & Pascal Scholz & Markus Andreas Meyer & Sabine Tischew, 2023. "Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks," Land, MDPI, vol. 12(6), pages 1-16, June.
    12. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    13. Ashkan Safari & Hamed Kheirandish Gharehbagh & Morteza Nazari Heris, 2023. "DeepVELOX: INVELOX Wind Turbine Intelligent Power Forecasting Using Hybrid GWO–GBR Algorithm," Energies, MDPI, vol. 16(19), pages 1-22, September.
    14. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    15. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    16. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    17. Anna Rutkowska-Ziarko & Lesław Markowski, 2022. "Accounting and Market Risk Measures of Polish Energy Companies," Energies, MDPI, vol. 15(6), pages 1-21, March.
    18. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    19. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    20. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1124-:d:1346759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.