IDEAS home Printed from https://ideas.repec.org/r/spr/conchp/978-3-7908-1605-1_5.html
   My bibliography  Save this item

Do Ifo Indicators Help Explain Revisions in German Industrial Production?

In: Ifo Survey Data in Business Cycle and Monetary Policy Analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dany Brouillette & Marie-Noëlle Robitaille & Laurence Savoie-Chabot & Pierre St-Amant & Bassirou Gueye & Elise Martin, 2019. "The Trend Unemployment Rate in Canada: Searching for the Unobservable," Staff Working Papers 19-13, Bank of Canada.
  2. Jan Jacobs & Jan-Egbert Sturm, 2009. "The information content of KOF indicators on Swiss current account data revisions," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2008(2), pages 161-181.
  3. Pascal Bührig & Klaus Wohlrabe, 2015. "Revisionen der deutschen Industrieproduktion und die ifo Indikatoren," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 68(21), pages 27-31, November.
  4. Lise Pichette & Marie-Noëlle Robitaille, 2017. "Assessing the Business Outlook Survey Indicator Using Real-Time Data," Discussion Papers 17-5, Bank of Canada.
  5. Calista Cheung & Luke Frymire & Lise Pichette, 2020. "Can the Business Outlook Survey Help Improve Estimates of the Canadian Output Gap?," Discussion Papers 2020-14, Bank of Canada.
  6. Robert Lehmann, 2023. "The Forecasting Power of the ifo Business Survey," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 43-94, March.
  7. Klaus Abberger & Gebhard Flaig & Wolfgang Nierhaus, 2007. "ifo Konjunkturumfragen und Konjunkturanalyse : ausgewählte methodische Aufsätze aus dem ifo Schnelldienst," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 33.
  8. Jan Jacobs & Jan-Egbert Sturm, 2007. "A real-time analysis of the Swiss trade account," Money Macro and Finance (MMF) Research Group Conference 2006 167, Money Macro and Finance Research Group.
  9. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
  10. repec:jns:jbstat:v:227:y:2007:i:1:p:87-101 is not listed on IDEAS
  11. Pierdzioch, Christian & Döpke, Jörg & Hartmann, Daniel, 2008. "Forecasting stock market volatility with macroeconomic variables in real time," Journal of Economics and Business, Elsevier, vol. 60(3), pages 256-276.
  12. Jan-Egbert Sturm & Michael Graff, 2009. "Schätzung der Outputlücke," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 3(2), pages 55-67, June.
  13. Katja Heinisch & Rolf Scheufele, 2019. "Should Forecasters Use Real‐Time Data to Evaluate Leading Indicator Models for GDP Prediction? German Evidence," German Economic Review, Verein für Socialpolitik, vol. 20(4), pages 170-200, November.
  14. Konstantin A. Kholodilin & Boriss Siliverstovs, 2009. "Do forecasters inform or reassure?," KOF Working papers 09-215, KOF Swiss Economic Institute, ETH Zurich.
  15. Lise Pichette & Marie-Noëlle Robitaille & Mohanad Salameh & Pierre St-Amant, 2018. "Dismiss the Gap? A Real-Time Assessment of the Usefulness of Canadian Output Gaps in Forecasting Inflation," Staff Working Papers 18-10, Bank of Canada.
  16. Timo Wollmershäuser, 2016. "Vorhersage der Revisionen der Vorratsveränderungen mit Hilfe der ifo Lagerbeurteilung," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 69(07), pages 26-32, April.
  17. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
  18. Anna Sophia Ciesielski & Klaus Wohlrabe, 2011. "Sektorale Prognosen im Verarbeitenden Gewerbe," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(22), pages 27-35, November.
  19. Pascal Bührig & Klaus Wohlrabe, 2016. "Forecasting revisions of German industrial production," Applied Economics Letters, Taylor & Francis Journals, vol. 23(15), pages 1062-1064, October.
  20. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36.
  21. Pichette, Lise & Robitaille, Marie-Noëlle & Salameh, Mohanad & St-Amant, Pierre, 2019. "Dismiss the output gaps? To use with caution given their limitations," Economic Modelling, Elsevier, vol. 76(C), pages 199-215.
  22. Roland Döhrn, 2023. "Are German National Accounts informationally efficient?," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(1), pages 23-42, March.
  23. Boysen-Hogrefe, Jens & Neuwirth, Stefan, 2012. "The impact of seasonal and price adjustments on the predictability of German GDP revisions," Kiel Working Papers 1753, Kiel Institute for the World Economy (IfW Kiel).
  24. Heinisch, Katja, 2016. "A real-time analysis on the importance of hard and soft data for nowcasting German GDP," VfS Annual Conference 2016 (Augsburg): Demographic Change 145864, Verein für Socialpolitik / German Economic Association.
  25. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
  26. Werner Hölzl & Gerhard Schwarz, 2014. "Der WIFO-Konjunkturtest: Methodik und Prognoseeigenschaften," WIFO Monatsberichte (monthly reports), WIFO, vol. 87(12), pages 835-850, December.
  27. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88.
  28. Gerberding, Christina & Worms, Andreas & Seitz, Franz, 2004. "How the Bundesbank really conducted monetary policy: An analysis based on real-time data," Discussion Paper Series 1: Economic Studies 2004,25, Deutsche Bundesbank.
  29. Vogt Gerit, 2007. "Analyse der Prognoseeigenschaften von ifo-Konjunkturindikatoren unter Echtzeitbedingungen / The Forecasting Performance of ifo-indicators Under Real-time Conditions," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 227(1), pages 87-101, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.