IDEAS home Printed from https://ideas.repec.org/h/spr/conchp/978-3-7908-1605-1_5.html
   My bibliography  Save this book chapter

Do Ifo Indicators Help Explain Revisions in German Industrial Production?

In: Ifo Survey Data in Business Cycle and Monetary Policy Analysis

Author

Listed:
  • Jan Jacobs

    (University of Groningen)

  • Jan-Egbert Sturm

    (University of Konstanz and CESifo
    Thurgau Institute of Economics)

Abstract

This paper studies the information content of some Ifo indicators. In particular, we investigate whether two Ifo indicators, one on the current business situation, the other on current production development, provide information on revisions of German industrial production. A new feature of our analysis is the construction and use of a real-time dataset. We conclude that the Ifo indicators play a role in explaining revisions, but counterintuitively the business situation indicator performs better than the production indicator.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jan Jacobs & Jan-Egbert Sturm, 2005. "Do Ifo Indicators Help Explain Revisions in German Industrial Production?," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 93-114, Springer.
  • Handle: RePEc:spr:conchp:978-3-7908-1605-1_5
    DOI: 10.1007/3-7908-1605-1_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christopher Bajada, 2002. "The Effects of Inflation and the Business Cycle on Revisions of Macroeconomic Data," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 35(3), pages 276-286, September.
    2. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    3. Egginton, Don M. & Pick, Andreas & Vahey, Shaun P., 2002. "'Keep it real!': a real-time UK macro data set," Economics Letters, Elsevier, vol. 77(1), pages 15-20, September.
    4. Victor Zarnowitz, 1992. "Business Cycles: Theory, History, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number zarn92-1.
    5. repec:ucp:bknber:9780226978901 is not listed on IDEAS
    6. Erich Langmantel, 1999. "Das ifo Geschäftsklima als Indikator für die Prognose des Bruttoinlandsprodukts," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 52(16-17), pages 16-21, October.
    7. Fritsche Ulrich & Stephan Sabine, 2002. "Leading Indicators of German Business Cycles. An Assessment of Properties / Frühindikatoren der deutschen Konjunktur. Eine Beurteilung ihrer Eigenschaften," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(3), pages 289-315, June.
    8. Wolfgang Nierhaus & Jan-Egbert Sturm, 2003. "Methoden der Konjunkturprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 56(04), pages 7-23, February.
    9. Hirotugu Akaike, 1969. "Fitting autoregressive models for prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 243-247, December.
    10. Schröder, Michael & Hüfner, Felix P., 2002. "Forecasting economic activity in Germany: how useful are sentiment indicators?," ZEW Discussion Papers 02-56, ZEW - Leibniz Centre for European Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Sauer & Klaus Wohlrabe, 2020. "ifo Handbuch der Konjunkturumfragen," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 88, May.
    2. Harrison, Richard & Kapetanios, George & Yates, Tony, 2005. "Forecasting with measurement errors in dynamic models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 595-607.
    3. Ulrich Heilemann & Susanne Schnorr-Bäcker, 2016. "Could The Start Of The German Recession 2008-2009 Have Been Foreseen? Evidence From Real-Time Data," Working Papers 2016-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Anthony Garratt & Shaun P Vahey, 2006. "UK Real-Time Macro Data Characteristics," Economic Journal, Royal Economic Society, vol. 116(509), pages 119-135, February.
    5. Anthony Garratt & Gary Koop & ShaunP. Vahey, 2008. "Forecasting Substantial Data Revisions in the Presence of Model Uncertainty," Economic Journal, Royal Economic Society, vol. 118(530), pages 1128-1144, July.
    6. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    7. Drechsel, Katja & Scheufele, Rolf, 2011. "The Financial Crisis from a Forecaster’s Perspective," IWH Discussion Papers 5/2011, Halle Institute for Economic Research (IWH).
    8. Pesaran, Hashem & Timmermann, Allan, 2005. "Real-Time Econometrics," Econometric Theory, Cambridge University Press, vol. 21(1), pages 212-231, February.
    9. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
    10. Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.
    11. Kholodilin Konstantin Arkadievich & Siliverstovs Boriss, 2006. "On the Forecasting Properties of the Alternative Leading Indicators for the German GDP: Recent Evidence," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 226(3), pages 234-259, June.
    12. repec:bla:germec:v:8:y:2007:i::p:375-398 is not listed on IDEAS
    13. João Valle e Azevedo & João Tovar Jalles, 2011. "Rational vs. Professional Forecasts," Working Papers w201114, Banco de Portugal, Economics and Research Department.
    14. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    15. Nelson, Edward & Nikolov, Kalin, 2003. "UK inflation in the 1970s and 1980s: the role of output gap mismeasurement," Journal of Economics and Business, Elsevier, vol. 55(4), pages 353-370.
    16. Gerit Vogt, 2009. "Konjunkturprognose in Deutschland. Ein Beitrag zur Prognose der gesamtwirtschaftlichen Entwicklung auf Bundes- und Länderebene," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 36, May.
    17. Michael J. Lamla & Sarah M. Lein & Jan-Egbert Sturm, 2020. "Media reporting and business cycles: empirical evidence based on news data," Empirical Economics, Springer, vol. 59(3), pages 1085-1105, September.
    18. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.
    19. Nikolsko-Rzhevskyy, Alex, 2008. "Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data," MPRA Paper 11352, University Library of Munich, Germany.
    20. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
    21. Alex Nikolsko-Rzhevskyy, 2011. "Monetary Policy Estimation in Real Time: Forward-Looking Taylor Rules without Forward-Looking Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 871-897, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:conchp:978-3-7908-1605-1_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.