IDEAS home Printed from https://ideas.repec.org/r/inm/ormnsc/v45y1999i3p414-424.html
   My bibliography  Save this item

Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
  2. Silvano Martello & Paolo Toth, 2003. "An Exact Algorithm for the Two-Constraint 0--1 Knapsack Problem," Operations Research, INFORMS, vol. 51(5), pages 826-835, October.
  3. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
  4. Polyakovskiy, S. & Neumann, F., 2017. "The Packing While Traveling Problem," European Journal of Operational Research, Elsevier, vol. 258(2), pages 424-439.
  5. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  6. G Belov & G Scheithauer & E A Mukhacheva, 2008. "One-dimensional heuristics adapted for two-dimensional rectangular strip packing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 823-832, June.
  7. Daniel Kowalczyk & Roel Leus, 2017. "An exact algorithm for parallel machine scheduling with conflicts," Journal of Scheduling, Springer, vol. 20(4), pages 355-372, August.
  8. Mauro Dell'Amico & Manuel Iori & Silvano Martello & Michele Monaci, 2008. "Heuristic and Exact Algorithms for the Identical Parallel Machine Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 333-344, August.
  9. Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
  10. Marc Goerigk, 2014. "A note on upper bounds to the robust knapsack problem with discrete scenarios," Annals of Operations Research, Springer, vol. 223(1), pages 461-469, December.
  11. Audrey Cerqueus & Xavier Gandibleux & Anthony Przybylski & Frédéric Saubion, 2017. "On branching heuristics for the bi-objective 0/1 unidimensional knapsack problem," Journal of Heuristics, Springer, vol. 23(5), pages 285-319, October.
  12. Raidl, Günther R., 2015. "Decomposition based hybrid metaheuristics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 66-76.
  13. Fabrice Talla Nobibon & Roel Leus, 2014. "Complexity Results and Exact Algorithms for Robust Knapsack Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 533-552, May.
  14. Schepler, Xavier & Rossi, André & Gurevsky, Evgeny & Dolgui, Alexandre, 2022. "Solving robust bin-packing problems with a branch-and-price approach," European Journal of Operational Research, Elsevier, vol. 297(3), pages 831-843.
  15. Simon Görtz & Andreas Klose, 2012. "A Simple but Usually Fast Branch-and-Bound Algorithm for the Capacitated Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 597-610, November.
  16. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
  17. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
  18. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
  19. Furini, Fabio & Ljubić, Ivana & Sinnl, Markus, 2017. "An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 262(2), pages 438-448.
  20. Klose, Andreas & Drexl, Andreas, 2001. "Lower bounds for the capacitated facility location problem based on column generation," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 544, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  21. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
  22. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
  23. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems (revised as on 12/08/2021)," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  24. Ghosh, Diptesh & Bandyopadhyay, Tathagata, 2006. "Spotting Difficult Weakly Correlated Binary Knapsack Problems," IIMA Working Papers WP2006-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
  25. Markus Wagner & Marius Lindauer & Mustafa Mısır & Samadhi Nallaperuma & Frank Hutter, 2018. "A case study of algorithm selection for the traveling thief problem," Journal of Heuristics, Springer, vol. 24(3), pages 295-320, June.
  26. Charles H. Reilly, 2009. "Synthetic Optimization Problem Generation: Show Us the Correlations!," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 458-467, August.
  27. Keskin, Muhammed Emre, 2017. "A column generation heuristic for optimal wireless sensor network design with mobile sinks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 291-304.
  28. Fabio Furini & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2015. "Heuristic and Exact Algorithms for the Interval Min–Max Regret Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 392-405, May.
  29. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
  30. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
  31. Leitner, Markus & Ljubić, Ivana & Monaci, Michele & Sinnl, Markus & Tanınmış, Kübra, 2023. "An exact method for binary fortification games," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1026-1039.
  32. Olivier Lalonde & Jean-François Côté & Bernard Gendron, 2022. "A Branch-and-Price Algorithm for the Multiple Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3134-3150, November.
  33. Dahmani, Isma & Hifi, Mhand & Wu, Lei, 2016. "An exact decomposition algorithm for the generalized knapsack sharing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 761-774.
  34. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
  35. Xiaochuan Shi & Lei Wu & Xiaoliang Meng, 2017. "A New Optimization Model for the Sustainable Development: Quadratic Knapsack Problem with Conflict Graphs," Sustainability, MDPI, vol. 9(2), pages 1-10, February.
  36. Akinc, Umit, 2006. "Approximate and exact algorithms for the fixed-charge knapsack problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 363-375, April.
  37. Pisinger, David & Saidi, Alima, 2017. "Tolerance analysis for 0–1 knapsack problems," European Journal of Operational Research, Elsevier, vol. 258(3), pages 866-876.
  38. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
  39. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
  40. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
  41. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
  42. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
  43. Binh Thanh Dang & Tung Khac Truong, 2022. "Binary salp swarm algorithm for discounted {0-1} knapsack problem," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-28, April.
  44. Büther, Marcel, 2008. "Beam search for the elastic generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 634, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  45. Tang, Jiafu & Zhiqiao, Wu & Kwong, C.K. & Luo, Xinggang, 2013. "Integrated production strategy and reuse scenario: A CoFAQ model and case study of mail server system development," Omega, Elsevier, vol. 41(3), pages 536-552.
  46. Büther, Marcel, 2007. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 632, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  47. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
  48. Isma Dahmani & Mhand Hifi, 2021. "A modified descent method-based heuristic for binary quadratic knapsack problems with conflict graphs," Annals of Operations Research, Springer, vol. 298(1), pages 125-147, March.
  49. Haijian Si & Stylianos Kavadias & Christoph Loch, 2022. "Managing innovation portfolios: From project selection to portfolio design," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4572-4588, December.
  50. Büther, Marcel & Briskorn, Dirk, 2007. "Reducing the 0-1 knapsack problem with a single continuous variable to the standard 0-1 knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 629, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  51. Reilly, Charles H. & Sapkota, Nabin, 2015. "A family of composite discrete bivariate distributions with uniform marginals for simulating realistic and challenging optimization-problem instances," European Journal of Operational Research, Elsevier, vol. 241(3), pages 642-652.
  52. Elendner, Thomas & Femerling, R., 2003. "Allocation of in-house services: Experimental comparison of allocation mechanisms," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 577, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  53. Esswein, Carl & Billaut, Jean-Charles & Strusevich, Vitaly A., 2005. "Two-machine shop scheduling: Compromise between flexibility and makespan value," European Journal of Operational Research, Elsevier, vol. 167(3), pages 796-809, December.
  54. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
  55. Andreas Klose & Andreas Drexl, 2005. "Lower Bounds for the Capacitated Facility Location Problem Based on Column Generation," Management Science, INFORMS, vol. 51(11), pages 1689-1705, November.
  56. Cerqueus, Audrey & Przybylski, Anthony & Gandibleux, Xavier, 2015. "Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems," European Journal of Operational Research, Elsevier, vol. 244(2), pages 417-433.
  57. Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
  58. Peeters, Marc & Degraeve, Zeger, 2006. "Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 416-439, April.
  59. Della Croce, Federico & Salassa, Fabio & Scatamacchia, Rosario, 2017. "A new exact approach for the 0–1 Collapsing Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 260(1), pages 56-69.
  60. Fischetti, Matteo & Monaci, Michele & Sinnl, Markus, 2018. "A dynamic reformulation heuristic for Generalized Interdiction Problems," European Journal of Operational Research, Elsevier, vol. 267(1), pages 40-51.
  61. Yang Yang, 2024. "An Improved Unbounded-DP Algorithm for the Unbounded Knapsack Problem with Bounded Coefficients," Mathematics, MDPI, vol. 12(12), pages 1-12, June.
  62. Escudero, Laureano F. & Landete, Mercedes & Rodríguez-Chía, Antonio M., 2011. "Stochastic set packing problem," European Journal of Operational Research, Elsevier, vol. 211(2), pages 232-240, June.
  63. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.