IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y2020i1p101-119.html
   My bibliography  Save this article

Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems

Author

Listed:
  • Maxence Delorme

    (School of Mathematics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom)

  • Manuel Iori

    (Dipartimento di Scienze e Metodi dell'Ingegneria (DISMI), Università di Modena e Reggio Emilia, 42122 Reggio Emilia, Italy)

Abstract

We study pseudo-polynomial formulations for the classical bin packing and cutting stock problems. We first propose an overview of dominance and equivalence relations among the main pattern-based and pseudo-polynomial formulations from the literature. We then introduce reflect, a new formulation that uses just half of the bin capacity to model an instance and needs significantly fewer constraints and variables than the classical models. We propose upper- and lower-bounding techniques that make use of column generation and dual information to compensate reflect weaknesses when bin capacity is too high. We also present nontrivial adaptations of our techniques that solve two interesting problem variants, namely the variable-sized bin packing problem and the bin packing problem with item fragmentation. Extensive computational tests on benchmark instances show that our algorithms achieve state of the art results on all problems, improving on previous algorithms and finding several new proven optimal solutions.

Suggested Citation

  • Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
  • Handle: RePEc:inm:orijoc:v:32:y:2020:i:1:p:101-119
    DOI: 10.1287/ijoc.2018.0880
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0880
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    2. WOLSEY, Laurence A., 1977. "Valid inequalities, covering problems and discrete dynamic programs," LIDAM Reprints CORE 302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    4. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    5. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    6. Guntram Scheithauer, 2018. "One-Dimensional Cutting Stock," International Series in Operations Research & Management Science, in: Introduction to Cutting and Packing Optimization, chapter 0, pages 73-122, Springer.
    7. Belov, G. & Scheithauer, G., 2002. "A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths," European Journal of Operational Research, Elsevier, vol. 141(2), pages 274-294, September.
    8. Martinovic, J. & Scheithauer, G. & Valério de Carvalho, J.M., 2018. "A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 458-471.
    9. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    10. Jeremy F. Shapiro, 1968. "Dynamic Programming Algorithms for the Integer Programming Problem—I: The Integer Programming Problem Viewed as a Knapsack Type Problem," Operations Research, INFORMS, vol. 16(1), pages 103-121, February.
    11. Harald Dyckhoff, 1981. "A New Linear Programming Approach to the Cutting Stock Problem," Operations Research, INFORMS, vol. 29(6), pages 1092-1104, December.
    12. Claudio Arbib & Fabrizio Marinelli & Fabrizio Rossi & Francesco Di Iorio, 2002. "Cutting and Reuse: An Application from Automobile Component Manufacturing," Operations Research, INFORMS, vol. 50(6), pages 923-934, December.
    13. Alberto Ceselli & Giovanni Righini, 2008. "An Optimization Algorithm for the Ordered Open-End Bin-Packing Problem," Operations Research, INFORMS, vol. 56(2), pages 425-436, April.
    14. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    15. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    16. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    17. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    18. Belov, G. & Scheithauer, G., 2006. "A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting," European Journal of Operational Research, Elsevier, vol. 171(1), pages 85-106, May.
    19. Nitsche, Christoph & Scheithauer, Guntram & Terno, Johannes, 1999. "Tighter relaxations for the cutting stock problem," European Journal of Operational Research, Elsevier, vol. 112(3), pages 654-663, February.
    20. Clautiaux, François & Hanafi, Saïd & Macedo, Rita & Voge, Marie-Émilie & Alves, Cláudio, 2017. "Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints," European Journal of Operational Research, Elsevier, vol. 258(2), pages 467-477.
    21. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    22. VANDERBECK, François & WOLSEY, Laurence A., 2010. "Reformulation and decomposition of integer programs," LIDAM Reprints CORE 2188, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    2. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    3. Artur Pessoa & Ruslan Sadykov & Eduardo Uchoa, 2021. "Solving Bin Packing Problems Using VRPSolver Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-25, June.
    4. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    5. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    6. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    7. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    8. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    9. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2022. "Bin packing with lexicographic objectives for loading weight- and volume-constrained trucks in a direct-shipping system," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 1-43, June.
    10. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    11. Saharnaz Mehrani & Carlos Cardonha & David Bergman, 2022. "Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1070-1085, March.
    12. Ekici, Ali, 2023. "A large neighborhood search algorithm and lower bounds for the variable-Sized bin packing problem with conflicts," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1007-1020.
    13. Jasmin Grabenschweiger & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh, 2021. "The vehicle routing problem with heterogeneous locker boxes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 113-142, March.
    14. Delorme, Maxence & Iori, Manuel & Mendes, Nilson F.M., 2021. "Solution methods for scheduling problems with sequence-dependent deterioration and maintenance events," European Journal of Operational Research, Elsevier, vol. 295(3), pages 823-837.
    15. Olivier Lalonde & Jean-François Côté & Bernard Gendron, 2022. "A Branch-and-Price Algorithm for the Multiple Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3134-3150, November.
    16. Katrin Heßler & Stefan Irnich, 2021. "Partial Dominance in Branch-Price-and-Cut for the Basic Multi-Compartment Vehicle-Routing Problem," Working Papers 2115, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    2. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    3. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    4. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    5. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    6. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie & Andreas Fischer, 2019. "Cutting stock problems with nondeterministic item lengths: a new approach to server consolidation," 4OR, Springer, vol. 17(2), pages 173-200, June.
    7. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    8. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    9. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    10. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    11. Martinovic, J. & Scheithauer, G. & Valério de Carvalho, J.M., 2018. "A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 458-471.
    12. Artur Pessoa & Ruslan Sadykov & Eduardo Uchoa, 2021. "Solving Bin Packing Problems Using VRPSolver Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-25, June.
    13. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.
    14. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    15. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    16. Katrin Heßler & Stefan Irnich & Tobias Kreiter & Ulrich Pferschy, 2020. "Lexicographic Bin-Packing Optimization for Loading Trucks in a Direct-Shipping System," Working Papers 2009, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Krzysztof C. Kiwiel, 2010. "An Inexact Bundle Approach to Cutting-Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 131-143, February.
    18. John Martinovic & Guntram Scheithauer, 2016. "The proper relaxation and the proper gap of the skiving stock problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 527-548, December.
    19. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    20. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:2020:i:1:p:101-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.