IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1878-d1416037.html
   My bibliography  Save this article

An Improved Unbounded-DP Algorithm for the Unbounded Knapsack Problem with Bounded Coefficients

Author

Listed:
  • Yang Yang

    (School of Mathematical Sciences, Xiamen University, Xiamen 361005, China)

Abstract

Benchmark instances for the unbounded knapsack problem are typically generated according to specific criteria within a given constant range R , and these instances can be referred to as the unbounded knapsack problem with bounded coefficients (UKPB). In order to increase the difficulty of solving these instances, the knapsack capacity C is usually set to a very large value. While current efficient algorithms primarily center on the Fast Fourier Transform (FFT) and (min,+)-convolution method, there is a simpler method worth considering. In this paper, based on the basic Unbounded-DP algorithm, we utilize a recent branch and bound (B&B) result and basic theory of linear Diophantine equation, and propose an improved Unbounded-DP algorithm with time complexity of O ( R 4 ) and space complexity of O ( R 3 ) . Additionally, the algorithm can also solve the All-capacities unbounded knapsack problem within the complexity O ( R 4 + C ) . In particular, the proof techniques required by the algorithm are primarily covered in the first-year mathematics curriculum, which is convenient for subsequent researchers to grasp.

Suggested Citation

  • Yang Yang, 2024. "An Improved Unbounded-DP Algorithm for the Unbounded Knapsack Problem with Bounded Coefficients," Mathematics, MDPI, vol. 12(12), pages 1-12, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1878-:d:1416037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andonov, R. & Poirriez, V. & Rajopadhye, S., 2000. "Unbounded knapsack problem: Dynamic programming revisited," European Journal of Operational Research, Elsevier, vol. 123(2), pages 394-407, June.
    2. Silvano Martello & Paolo Toth, 1984. "A Mixture of Dynamic Programming and Branch-and-Bound for the Subset-Sum Problem," Management Science, INFORMS, vol. 30(6), pages 765-771, June.
    3. Becker, Henrique & Buriol, Luciana S., 2019. "An empirical analysis of exact algorithms for the unbounded knapsack problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 84-99.
    4. Nicola Bianchessi & Stefan Irnich, 2019. "Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 53(2), pages 442-462, March.
    5. H. W. Lenstra, 1983. "Integer Programming with a Fixed Number of Variables," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 538-548, November.
    6. T. C. Hu & M. L. Lenard, 1976. "Technical Note—Optimality of a Heuristic Solution for a Class of Knapsack Problems," Operations Research, INFORMS, vol. 24(1), pages 193-196, February.
    7. M. J. Magazine & G. L. Nemhauser & L. E. Trotter, 1975. "When the Greedy Solution Solves a Class of Knapsack Problems," Operations Research, INFORMS, vol. 23(2), pages 207-217, April.
    8. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    9. David Pisinger, 1997. "A Minimal Algorithm for the 0-1 Knapsack Problem," Operations Research, INFORMS, vol. 45(5), pages 758-767, October.
    10. Deineko, Vladimir G. & Woeginger, Gerhard J., 2011. "Unbounded knapsack problems with arithmetic weight sequences," European Journal of Operational Research, Elsevier, vol. 213(2), pages 384-387, September.
    11. Warren Adams & Pietro Belotti & Ruobing Shen, 2016. "Convex hull characterizations of lexicographic orderings," Journal of Global Optimization, Springer, vol. 66(2), pages 311-329, October.
    12. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    2. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    3. Ghosh, Diptesh & Bandyopadhyay, Tathagata, 2006. "Spotting Difficult Weakly Correlated Binary Knapsack Problems," IIMA Working Papers WP2006-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    5. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    6. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    7. Gérard Cornuéjols & Milind Dawande, 1999. "A Class of Hard Small 0-1 Programs," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 205-210, May.
    8. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    9. Steffen Goebbels & Frank Gurski & Jochen Rethmann & Eda Yilmaz, 2017. "Change-making problems revisited: a parameterized point of view," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1218-1236, November.
    10. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    11. Reilly, Charles H. & Sapkota, Nabin, 2015. "A family of composite discrete bivariate distributions with uniform marginals for simulating realistic and challenging optimization-problem instances," European Journal of Operational Research, Elsevier, vol. 241(3), pages 642-652.
    12. Nicholas G. Hall & Marc E. Posner, 2007. "Performance Prediction and Preselection for Optimization and Heuristic Solution Procedures," Operations Research, INFORMS, vol. 55(4), pages 703-716, August.
    13. Deineko, Vladimir G. & Woeginger, Gerhard J., 2011. "Unbounded knapsack problems with arithmetic weight sequences," European Journal of Operational Research, Elsevier, vol. 213(2), pages 384-387, September.
    14. Charles H. Reilly, 2009. "Synthetic Optimization Problem Generation: Show Us the Correlations!," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 458-467, August.
    15. Dahmani, Isma & Hifi, Mhand & Wu, Lei, 2016. "An exact decomposition algorithm for the generalized knapsack sharing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 761-774.
    16. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    17. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    18. M. Köppe & M. Queyranne & C. T. Ryan, 2010. "Parametric Integer Programming Algorithm for Bilevel Mixed Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 137-150, July.
    19. Esmaeilbeigi, Rasul & Mak-Hau, Vicky & Yearwood, John & Nguyen, Vivian, 2022. "The multiphase course timetabling problem," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1098-1119.
    20. K. Aardal & R. E. Bixby & C. A. J. Hurkens & A. K. Lenstra & J. W. Smeltink, 2000. "Market Split and Basis Reduction: Towards a Solution of the Cornuéjols-Dawande Instances," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 192-202, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1878-:d:1416037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.