IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v5y2024i4d10.1007_s43069-024-00372-2.html
   My bibliography  Save this article

Branch-and-Bound and Dynamic Programming Approaches for the Knapsack Problem

Author

Listed:
  • Evgenii Burashnikov

    (National Research University Higher School of Economics (HSE University))

Abstract

The knapsack problem is one of the most popular NP-hard problems in combinatorial optimization. For 0-1 Knapsack Problem, there are two common approaches which guarantee the optimality of the solutions: Branch-and-Bound (BnB) and Dynamic Programming (DP) algorithms. Both algorithms suffer from a large amount of redundant calculations. To handle this problem, we proposed modifications of these algorithms. For DP, we suggest some new pre-processing and search rules which help us to avoid unneeded calculations. For BnB, we develop a combination of common BnB method with DP with list approach. Computational experiments on artificially generated data and common benchmarks show the effectiveness of the proposed algorithms.

Suggested Citation

  • Evgenii Burashnikov, 2024. "Branch-and-Bound and Dynamic Programming Approaches for the Knapsack Problem," SN Operations Research Forum, Springer, vol. 5(4), pages 1-19, December.
  • Handle: RePEc:spr:snopef:v:5:y:2024:i:4:d:10.1007_s43069-024-00372-2
    DOI: 10.1007/s43069-024-00372-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-024-00372-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-024-00372-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Kolesar, 1967. "A Branch and Bound Algorithm for the Knapsack Problem," Management Science, INFORMS, vol. 13(9), pages 723-735, May.
    2. Pisinger, David, 2002. "Heuristics for the container loading problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 382-392, September.
    3. Richard Bellman, 1954. "On some applications of the theory of dynamic programming to logistics," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(2), pages 141-153, June.
    4. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    5. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    6. G. L. Nemhauser & Z. Ullmann, 1969. "Discrete Dynamic Programming and Capital Allocation," Management Science, INFORMS, vol. 15(9), pages 494-505, May.
    7. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas L. Magnanti, 2021. "Optimization: From Its Inception," Management Science, INFORMS, vol. 67(9), pages 5349-5363, September.
    2. Raquel Sanchis & Raúl Poler, 2019. "Enterprise Resilience Assessment—A Quantitative Approach," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    3. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    4. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    5. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    6. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    7. Dawei Chen & Fangxu Mo & Ye Chen & Jun Zhang & Xinyu You, 2022. "Optimization of Ramp Locations along Freeways: A Dynamic Programming Approach," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    8. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    9. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    10. Vanvuchelen, Nathalie & De Boeck, Kim & Boute, Robert N., 2024. "Cluster-based lateral transshipments for the Zambian health supply chain," European Journal of Operational Research, Elsevier, vol. 313(1), pages 373-386.
    11. Bartłomiej Kocot & Paweł Czarnul & Jerzy Proficz, 2023. "Energy-Aware Scheduling for High-Performance Computing Systems: A Survey," Energies, MDPI, vol. 16(2), pages 1-28, January.
    12. Wadi Khalid Anuar & Lai Soon Lee & Hsin-Vonn Seow & Stefan Pickl, 2021. "A Multi-Depot Vehicle Routing Problem with Stochastic Road Capacity and Reduced Two-Stage Stochastic Integer Linear Programming Models for Rollout Algorithm," Mathematics, MDPI, vol. 9(13), pages 1-44, July.
    13. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    14. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    15. Matthias Breuer & David Windisch, 2019. "Investment Dynamics and Earnings‐Return Properties: A Structural Approach," Journal of Accounting Research, Wiley Blackwell, vol. 57(3), pages 639-674, June.
    16. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    17. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    18. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    19. Michael J. Pennock & William B. Rouse & Diane L. Kollar, 2007. "Transforming the Acquisition Enterprise: A Framework for Analysis and a Case Study of Ship Acquisition," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 99-117, June.
    20. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:5:y:2024:i:4:d:10.1007_s43069-024-00372-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.