IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v6y2018i1d10.1007_s13675-017-0084-4.html
   My bibliography  Save this article

An improved cut-and-solve algorithm for the single-source capacitated facility location problem

Author

Listed:
  • Sune Lauth Gadegaard

    (Aarhus University)

  • Andreas Klose

    (Aarhus University)

  • Lars Relund Nielsen

    (Aarhus University)

Abstract

In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two-level local branching heuristic to find an upper bound, and if optimality has not yet been established, the third phase uses the cut-and-solve framework to close the optimality gap. Extensive computational results are reported, showing that the proposed algorithm runs 10–80 times faster on average compared to state-of-the-art problem-specific algorithms.

Suggested Citation

  • Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
  • Handle: RePEc:spr:eurjco:v:6:y:2018:i:1:d:10.1007_s13675-017-0084-4
    DOI: 10.1007/s13675-017-0084-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-017-0084-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-017-0084-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holmberg, Kaj & Ronnqvist, Mikael & Yuan, Di, 1999. "An exact algorithm for the capacitated facility location problems with single sourcing," European Journal of Operational Research, Elsevier, vol. 113(3), pages 544-559, March.
    2. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    3. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1998. "Lifted Cover Inequalities for 0-1 Integer Programs: Computation," INFORMS Journal on Computing, INFORMS, vol. 10(4), pages 427-437, November.
    4. Barcelo, J. & Casanovas, J., 1984. "A heuristic lagrangean algorithm for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 15(2), pages 212-226, February.
    5. Chen, Chia-Ho & Ting, Ching-Jung, 2008. "Combining Lagrangian heuristic and Ant Colony System to solve the Single Source Capacitated Facility Location Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 1099-1122, November.
    6. Sridharan, R., 1993. "A Lagrangian heuristic for the capacitated plant location problem with single source constraints," European Journal of Operational Research, Elsevier, vol. 66(3), pages 305-312, May.
    7. Ronnqvist, Mikael & Tragantalerngsak, Suda & Holt, John, 1999. "A repeated matching heuristic for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 51-68, July.
    8. Yang, Zhen & Chu, Feng & Chen, Haoxun, 2012. "A cut-and-solve based algorithm for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 521-532.
    9. Cornuejols, G. & Sridharan, R. & Thizy, J. M., 1991. "A comparison of heuristics and relaxations for the capacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 50(3), pages 280-297, February.
    10. Gabriel R. Bitran & Vijaya Chandru & Dorothy E. Sempolinski & Jeremy F. Shapiro, 1981. "Inverse Optimization: An Application to the Capacitated Plant Location Problem," Management Science, INFORMS, vol. 27(10), pages 1120-1141, October.
    11. Correia, Isabel & Gouveia, Luís & Saldanha-da-Gama, Francisco, 2010. "Discretized formulations for capacitated location problems with modular distribution costs," European Journal of Operational Research, Elsevier, vol. 204(2), pages 237-244, July.
    12. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    13. Iván Contreras & Juan Díaz, 2008. "Scatter search for the single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 157(1), pages 73-89, January.
    14. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raoul Fonkoua Fofou & Zhigang Jiang & Qingshan Gong & Yihua Yang, 2022. "A Decision-Making Model for Remanufacturing Facility Location in Underdeveloped Countries: A Capacitated Facility Location Problem Approach," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    2. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    3. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    4. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    5. Yang, Zhen & Chen, Haoxun & Chu, Feng & Wang, Nengmin, 2019. "An effective hybrid approach to the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 467-480.
    6. F. Antonio Medrano, 2020. "The complete vertex p-center problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 327-343, October.
    7. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    8. Claudio Contardo & Jorge A. Sefair, 2022. "A Progressive Approximation Approach for the Exact Solution of Sparse Large-Scale Binary Interdiction Games," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 890-908, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhen & Chu, Feng & Chen, Haoxun, 2012. "A cut-and-solve based algorithm for the single-source capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 521-532.
    2. Guastaroba, G. & Speranza, M.G., 2014. "A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 438-450.
    3. Mohammad Nezhad, Ali & Manzour, Hasan & Salhi, Said, 2013. "Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 713-723.
    4. Tragantalerngsak, Suda & Holt, John & Ronnqvist, Mikael, 2000. "An exact method for the two-echelon, single-source, capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 123(3), pages 473-489, June.
    5. Iván Contreras & Juan Díaz, 2008. "Scatter search for the single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 157(1), pages 73-89, January.
    6. Raghavan, S. & Sahin, Mustafa & Salman, F. Sibel, 2019. "The capacitated mobile facility location problem," European Journal of Operational Research, Elsevier, vol. 277(2), pages 507-520.
    7. Torbjörn Larsson & Nils-Hassan Quttineh & Ida Åkerholm, 2024. "A Lagrangian bounding and heuristic principle for bi-objective discrete optimization," Operational Research, Springer, vol. 24(2), pages 1-34, June.
    8. Samir Elhedhli & Jean-Louis Goffin, 2005. "Efficient Production-Distribution System Design," Management Science, INFORMS, vol. 51(7), pages 1151-1164, July.
    9. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Simon Görtz & Andreas Klose, 2012. "A Simple but Usually Fast Branch-and-Bound Algorithm for the Capacitated Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 597-610, November.
    11. van der Gaast, J.P. & Rietveld, C.A. & Gabor, A.F. & Zhang, Y., 2011. "A Local Search Algorithm for Clustering in Software as a Service Networks," ERIM Report Series Research in Management ERS-2011-004-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    13. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    14. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    15. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    16. Di Francesco, Massimo & Gaudioso, Manlio & Gorgone, Enrico & Murthy, Ishwar, 2021. "A new extended formulation with valid inequalities for the Capacitated Concentrator Location Problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 975-986.
    17. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    18. R. K. Ahuja & J. B. Orlin & S. Pallottino & M. P. Scaparra & M. G. Scutellà, 2004. "A Multi-Exchange Heuristic for the Single-Source Capacitated Facility Location Problem," Management Science, INFORMS, vol. 50(6), pages 749-760, June.
    19. Lin, C.K.Y., 2009. "Stochastic single-source capacitated facility location model with service level requirements," International Journal of Production Economics, Elsevier, vol. 117(2), pages 439-451, February.
    20. Dong, Zhijie & Turnquist, Mark A., 2015. "Combining service frequency and vehicle routing for managing supplier shipments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 231-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:6:y:2018:i:1:d:10.1007_s13675-017-0084-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.