IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v41y2013i3p536-552.html
   My bibliography  Save this article

Integrated production strategy and reuse scenario: A CoFAQ model and case study of mail server system development

Author

Listed:
  • Tang, Jiafu
  • Zhiqiao, Wu
  • Kwong, C.K.
  • Luo, Xinggang

Abstract

One of the core problems in software product family (SPF) is the coordination of product building and core asset development, specifically the integration of production strategy decision and core asset scenario selection. In the current paper, a model of Cost Optimization under Functional And Quality (CoFAQ) goal satisfaction constraints is developed. It provides a systematic mechanism for management to analyze all possible products and evaluate various reuse alternatives at the organizational level. The CoFAQ model facilitates decision-makers to optimize the SPF development process by determining which products are involved in the SPF (i.e. production strategy) and which reuse scenario for each module should be selected to implement the SPF toward minimum total developing cost under the constraints of satisfying functional and quality goals. A two-phase algorithm with heuristic (TPA) is developed to solve the model efficiently. Based on the TPA, the CoFAQ is reduced to a weighted set-covering problem for production strategy decision and a knapsack problem for the reuse scenario selection. An application of the model in mail server domain development is presented to illustrate how it has been used in practice.

Suggested Citation

  • Tang, Jiafu & Zhiqiao, Wu & Kwong, C.K. & Luo, Xinggang, 2013. "Integrated production strategy and reuse scenario: A CoFAQ model and case study of mail server system development," Omega, Elsevier, vol. 41(3), pages 536-552.
  • Handle: RePEc:eee:jomega:v:41:y:2013:i:3:p:536-552
    DOI: 10.1016/j.omega.2012.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048312001053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2012.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    2. Jung, Ho-Won & Choi, Byoungju, 1999. "Optimization models for quality and cost of modular software systems," European Journal of Operational Research, Elsevier, vol. 112(3), pages 613-619, February.
    3. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhiqiao & Tang, Jiafu & Kwong, C.K. & Marinelli, F., 2015. "An improvement on “Integrated production strategy and reuse scenario: A CoFAQ model and case study of mail server system development”," Omega, Elsevier, vol. 56(C), pages 50-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    2. Silvano Martello & Paolo Toth, 2003. "An Exact Algorithm for the Two-Constraint 0--1 Knapsack Problem," Operations Research, INFORMS, vol. 51(5), pages 826-835, October.
    3. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    4. Marc Goerigk, 2014. "A note on upper bounds to the robust knapsack problem with discrete scenarios," Annals of Operations Research, Springer, vol. 223(1), pages 461-469, December.
    5. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    6. M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
    7. Evgenii Burashnikov, 2024. "Branch-and-Bound and Dynamic Programming Approaches for the Knapsack Problem," SN Operations Research Forum, Springer, vol. 5(4), pages 1-19, December.
    8. Isma Dahmani & Mhand Hifi, 2021. "A modified descent method-based heuristic for binary quadratic knapsack problems with conflict graphs," Annals of Operations Research, Springer, vol. 298(1), pages 125-147, March.
    9. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    10. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    11. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    12. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    13. Haijian Si & Stylianos Kavadias & Christoph Loch, 2022. "Managing innovation portfolios: From project selection to portfolio design," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4572-4588, December.
    14. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    15. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    16. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    17. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    18. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    19. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2020. "On the difficulty of budget allocation in claims problems with indivisible items of different prices," ThE Papers 20/09, Department of Economic Theory and Economic History of the University of Granada..
    20. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2021. "On the Difficulty of Budget Allocation in Claims Problems with Indivisible Items and Prices," Group Decision and Negotiation, Springer, vol. 30(5), pages 1133-1159, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:41:y:2013:i:3:p:536-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.