An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem
Author
Abstract
Suggested Citation
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03322716
Download full text from publisher
References listed on IDEAS
- Yoshiaki Toyoda, 1975. "A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems," Management Science, INFORMS, vol. 21(12), pages 1417-1427, August.
- Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
- David Pisinger, 1997. "A Minimal Algorithm for the 0-1 Knapsack Problem," Operations Research, INFORMS, vol. 45(5), pages 758-767, October.
- Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
- Luss, Hanan, 1992. "Minimax resource allocation problems: Optimization and parametric analysis," European Journal of Operational Research, Elsevier, vol. 60(1), pages 76-86, July.
- Pang, Jong-Shi & Chang-Sung, Yu, 1989. "A min-max resource allocation problem with substitutions," European Journal of Operational Research, Elsevier, vol. 41(2), pages 218-223, July.
- George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
- Nauss, Robert M., 1978. "The 0-1 knapsack problem with multiple choice constraints," European Journal of Operational Research, Elsevier, vol. 2(2), pages 125-131, March.
- Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
- Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
- Sbihi, Abdelkader, 2010.
"A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem,"
European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
- Abdelkader Sbihi, 2009. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," Post-Print hal-00644088, HAL.
- M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
- Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
- B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
- M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
- Yuji Nakagawa & Ross J. W. James & César Rego & Chanaka Edirisinghe, 2014. "Entropy-Based Optimization of Nonlinear Separable Discrete Decision Models," Management Science, INFORMS, vol. 60(3), pages 695-707, March.
- Ghosh, Diptesh & Bandyopadhyay, Tathagata, 2006. "Spotting Difficult Weakly Correlated Binary Knapsack Problems," IIMA Working Papers WP2006-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Michel, S. & Perrot, N. & Vanderbeck, F., 2009. "Knapsack problems with setups," European Journal of Operational Research, Elsevier, vol. 196(3), pages 909-918, August.
- Klein, Rachelle S. & Luss, Hanan & Rothblum, Uriel G., 1995. "Multiperiod allocation of substitutable resources," European Journal of Operational Research, Elsevier, vol. 85(3), pages 488-503, September.
- Silvano Martello & Paolo Toth, 2003. "An Exact Algorithm for the Two-Constraint 0--1 Knapsack Problem," Operations Research, INFORMS, vol. 51(5), pages 826-835, October.
- Higgins Michael J. & Rivest Ronald L. & Stark Philip B., 2011. "Sharper p-Values for Stratified Election Audits," Statistics, Politics and Policy, De Gruyter, vol. 2(1), pages 1-37, October.
- Ang, James S.K. & Cao, Chengxuan & Ye, Heng-Qing, 2007. "Model and algorithms for multi-period sea cargo mix problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1381-1393, August.
- Marc Goerigk, 2014. "A note on upper bounds to the robust knapsack problem with discrete scenarios," Annals of Operations Research, Springer, vol. 223(1), pages 461-469, December.
- Furini, Fabio & Ljubić, Ivana & Sinnl, Markus, 2017. "An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 262(2), pages 438-448.
- Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
- Evgenii Burashnikov, 2024. "Branch-and-Bound and Dynamic Programming Approaches for the Knapsack Problem," SN Operations Research Forum, Springer, vol. 5(4), pages 1-19, December.
- Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
- Tang, Jiafu & Zhiqiao, Wu & Kwong, C.K. & Luo, Xinggang, 2013. "Integrated production strategy and reuse scenario: A CoFAQ model and case study of mail server system development," Omega, Elsevier, vol. 41(3), pages 536-552.
More about this item
Keywords
Combinatorial optimization; Branch and bound; Sequential algorithm; Knapsack problem; optimisation combinatoire; séparation et évaluation; algorithme séquentiel; problème du sac-à-dos;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-03322716. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.