IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i12d10.1057_palgrave.jors.2601796.html
   My bibliography  Save this article

Heuristic algorithms for the multiple-choice multidimensional knapsack problem

Author

Listed:
  • M Hifi

    (LaRIA, UPJV
    CERMSEM-CNRS UMR 8095, Universite de Paris 1)

  • M Michrafy

    (CERMSEM-CNRS UMR 8095, Universite de Paris 1)

  • A Sbihi

    (LaRIA, UPJV)

Abstract

In this paper, we propose several heuristics for approximately solving the multiple-choice multidimensional knapsack problem (noted MMKP), an NP-Hard combinatorial optimization problem. The first algorithm is a constructive approach used especially for constructing an initial feasible solution for the problem. The second approach is applied in order to improve the quality of the initial solution. Finally, we introduce the main algorithm, which starts by applying the first approach and tries to produce a better solution to the MMKP. The last approach can be viewed as a two-stage procedure: (i) the first stage is applied in order to penalize a chosen feasible solution and, (ii) the second stage is used in order to normalize and to improve the solution given by the firs stage. The performance of the proposed approaches has been evaluated based problem instances extracted from the literature. Encouraging results have been obtained.

Suggested Citation

  • M Hifi & M Michrafy & A Sbihi, 2004. "Heuristic algorithms for the multiple-choice multidimensional knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1323-1332, December.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:12:d:10.1057_palgrave.jors.2601796
    DOI: 10.1057/palgrave.jors.2601796
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601796
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoshiaki Toyoda, 1975. "A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems," Management Science, INFORMS, vol. 21(12), pages 1417-1427, August.
    2. Silvano Martello & Paolo Toth, 1988. "A New Algorithm for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 34(5), pages 633-644, May.
    3. Pisinger, David, 1999. "An exact algorithm for large multiple knapsack problems," European Journal of Operational Research, Elsevier, vol. 114(3), pages 528-541, May.
    4. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    5. Voudouris, Christos & Tsang, Edward, 1999. "Guided local search and its application to the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 113(2), pages 469-499, March.
    6. Nauss, Robert M., 1978. "The 0-1 knapsack problem with multiple choice constraints," European Journal of Operational Research, Elsevier, vol. 2(2), pages 125-131, March.
    7. Egon Balas & Eitan Zemel, 1980. "An Algorithm for Large Zero-One Knapsack Problems," Operations Research, INFORMS, vol. 28(5), pages 1130-1154, October.
    8. David Pisinger, 1997. "A Minimal Algorithm for the 0-1 Knapsack Problem," Operations Research, INFORMS, vol. 45(5), pages 758-767, October.
    9. Oluf Faroe & David Pisinger & Martin Zachariasen, 2003. "Guided Local Search for the Three-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 267-283, August.
    10. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    2. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    3. N. Cherfi & M. Hifi, 2010. "A column generation method for the multiple-choice multi-dimensional knapsack problem," Computational Optimization and Applications, Springer, vol. 46(1), pages 51-73, May.
    4. Ewa M. Bednarczuk & Janusz Miroforidis & Przemysław Pyzel, 2018. "A multi-criteria approach to approximate solution of multiple-choice knapsack problem," Computational Optimization and Applications, Springer, vol. 70(3), pages 889-910, July.
    5. Sylvain Barde, 2015. "Back to the Future: Economic Self-Organisation and Maximum Entropy Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 337-358, February.
    6. V. Van Peteghem & M. Vanhoucke, 2009. "An Artificial Immune System for the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/555, Ghent University, Faculty of Economics and Business Administration.
    7. Gao, Chao & Lu, Guanzhou & Yao, Xin & Li, Jinlong, 2017. "An iterative pseudo-gap enumeration approach for the Multidimensional Multiple-choice Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 260(1), pages 1-11.
    8. Sylvain Barde, 2012. "Back to the future: economic rationality and maximum entropy prediction," Studies in Economics 1202, School of Economics, University of Kent.
    9. Caserta, Marco & Voß, Stefan, 2019. "The robust multiple-choice multidimensional knapsack problem," Omega, Elsevier, vol. 86(C), pages 16-27.
    10. Lamanna, Leonardo & Mansini, Renata & Zanotti, Roberto, 2022. "A two-phase kernel search variant for the multidimensional multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 53-65.
    11. Jaeyoung Yang & Yong-Hyuk Kim & Yourim Yoon, 2022. "A Memetic Algorithm with a Novel Repair Heuristic for the Multiple-Choice Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    12. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkader Sbihi, 2007. "A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 13(4), pages 337-351, May.
    2. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    3. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322716, HAL.
    4. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    5. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    6. Silvano Martello & Paolo Toth, 2003. "An Exact Algorithm for the Two-Constraint 0--1 Knapsack Problem," Operations Research, INFORMS, vol. 51(5), pages 826-835, October.
    7. Reilly, Charles H. & Sapkota, Nabin, 2015. "A family of composite discrete bivariate distributions with uniform marginals for simulating realistic and challenging optimization-problem instances," European Journal of Operational Research, Elsevier, vol. 241(3), pages 642-652.
    8. Charles H. Reilly, 2009. "Synthetic Optimization Problem Generation: Show Us the Correlations!," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 458-467, August.
    9. David Pisinger, 1999. "Core Problems in Knapsack Algorithms," Operations Research, INFORMS, vol. 47(4), pages 570-575, August.
    10. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    11. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    12. Ghosh, Diptesh & Bandyopadhyay, Tathagata, 2006. "Spotting Difficult Weakly Correlated Binary Knapsack Problems," IIMA Working Papers WP2006-01-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Ang, James S.K. & Cao, Chengxuan & Ye, Heng-Qing, 2007. "Model and algorithms for multi-period sea cargo mix problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1381-1393, August.
    14. Marc Goerigk, 2014. "A note on upper bounds to the robust knapsack problem with discrete scenarios," Annals of Operations Research, Springer, vol. 223(1), pages 461-469, December.
    15. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    16. Arnaud Fréville & SaÏd Hanafi, 2005. "The Multidimensional 0-1 Knapsack Problem—Bounds and Computational Aspects," Annals of Operations Research, Springer, vol. 139(1), pages 195-227, October.
    17. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    18. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    19. Nicholas G. Hall & Marc E. Posner, 2007. "Performance Prediction and Preselection for Optimization and Heuristic Solution Procedures," Operations Research, INFORMS, vol. 55(4), pages 703-716, August.
    20. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:12:d:10.1057_palgrave.jors.2601796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.