IDEAS home Printed from https://ideas.repec.org/r/eee/tefoso/v86y2014icp287-303.html
   My bibliography  Save this item

Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Xiaoli & Huang, Lucheng & Daim, Tugrul & Li, Xin & Li, Zhiqiang, 2021. "Evaluation of China's new energy vehicle policy texts with quantitative and qualitative analysis," Technology in Society, Elsevier, vol. 67(C).
  2. Rezaeian, M. & Montazeri, H. & Loonen, R.C.G.M., 2017. "Science foresight using life-cycle analysis, text mining and clustering: A case study on natural ventilation," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 270-280.
  3. Haydar Yalcin & Tugrul Daim, 2021. "Mining research and invention activity for innovation trends: case of blockchain technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3775-3806, May.
  4. Heeyong Noh & Youngkeun Song & Ae-Soon Park & Byungun Yoon & Sungjoo Lee, 2016. "Development of new technology-based services," The Service Industries Journal, Taylor & Francis Journals, vol. 36(5-6), pages 200-222, April.
  5. Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
  6. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
  7. Seo, Wonchul & Yoon, Janghyeok & Park, Hyunseok & Coh, Byoung-youl & Lee, Jae-Min & Kwon, Oh-Jin, 2016. "Product opportunity identification based on internal capabilities using text mining and association rule mining," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 94-104.
  8. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
  9. Linares, Ian Marques Porto & De Paulo, Alex Fabianne & Porto, Geciane Silveira, 2019. "Patent-based network analysis to understand technological innovation pathways and trends," Technology in Society, Elsevier, vol. 59(C).
  10. Lee, Jiho & Ko, Namuk & Yoon, Janghyeok & Son, Changho, 2021. "An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
  11. Motohashi, Kazuyuki & Zhu, Chen, 2023. "Identifying technology opportunity using dual-attention model and technology-market concordance matrix," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
  12. Moon, Seungyeon & Lee, Heesang, 2024. "Identifying technological opportunities using enhanced tech mining: The case of the E-health industry," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
  13. Najmeh Masoumi & Reza Khajavi, 2023. "A fuzzy classifier for evaluation of research topics by using keyword co-occurrence network and sponsors information," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1485-1512, March.
  14. Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
  15. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
  16. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.
  17. Biswas, Sumana & Ali, Ismail & Chakrabortty, Ripon K. & Turan, Hasan Hüseyin & Elsawah, Sondoss & Ryan, Michael J., 2022. "Dynamic modeling for product family evolution combined with artificial neural network based forecasting model: A study of iPhone evolution," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
  18. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
  19. Geum, Youngjung & Park, Yongtae, 2016. "How to generate creative ideas for innovation: a hybrid approach of WordNet and morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 176-187.
  20. Hakyeon Lee & Hyunju Seol & Hyejong Min & Youngjung Geum, 2017. "The identification of new service opportunities: a case-based morphological analysis," Service Business, Springer;Pan-Pacific Business Association, vol. 11(1), pages 191-206, March.
  21. Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
  22. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
  23. Yuchul Jung, 2017. "A semantic annotation framework for scientific publications," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1009-1025, May.
  24. Ha, Sohee & Geum, Youngjung, 2022. "Identifying new innovative services using M&A data: An integrated approach of data-driven morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  25. Li, Munan & Wang, Wenshu & Zhou, Keyu, 2021. "Exploring the technology emergence related to artificial intelligence: A perspective of coupling analyses," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  26. Jing Ma & Yaohui Pan & Chih-Yi Su, 2022. "Organization-oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer’s disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5497-5517, September.
  27. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
  28. Guo, Junfang & Wang, Xuefeng & Li, Qianrui & Zhu, Donghua, 2016. "Subject–action–object-based morphology analysis for determining the direction of technological change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 27-40.
  29. He, Xi-jun & Meng, Xue & Dong, Yan-bo & Wu, Yu-ying, 2019. "Demand identification model of potential technology based on SAO structure semantic analysis: The case of new energy and energy saving fields," Technology in Society, Elsevier, vol. 58(C).
  30. Zhenfeng Liu & Jian Feng & Jinfeng Wang, 2020. "Resource-Constrained Innovation Method for Sustainability: Application of Morphological Analysis and TRIZ Inventive Principles," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
  31. Lee, MyoungHoon & Kim, Suhyeon & Kim, Hangyeol & Lee, Junghye, 2022. "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  32. Cheng, Yu & Huang, Lucheng & Ramlogan, Ronnie & Li, Xin, 2017. "Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 170-183.
  33. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
  34. Kim, Hyunwoo & Hong, Suckwon & Kwon, Ohjin & Lee, Changyong, 2017. "Concentric diversification based on technological capabilities: Link analysis of products and technologies," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 246-257.
  35. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
  36. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  37. Mingyu Park & Youngjung Geum, 2021. "On the data-driven generation of new service idea: integrated approach of morphological analysis and text mining," Service Business, Springer;Pan-Pacific Business Association, vol. 15(3), pages 539-561, September.
  38. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
  39. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
  40. Kiani Mavi, Reza & Kiani Mavi, Neda & Farzipoor Saen, Reza & Goh, Mark, 2022. "Common weights analysis of renewable energy efficiency of OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
  41. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
  42. Kwon, Heeyeul & Park, Yongtae & Geum, Youngjung, 2018. "Toward data-driven idea generation: Application of Wikipedia to morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 56-80.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.