IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v174y2022ics0040162521006302.html
   My bibliography  Save this article

Identifying new innovative services using M&A data: An integrated approach of data-driven morphological analysis

Author

Listed:
  • Ha, Sohee
  • Geum, Youngjung

Abstract

This study suggests a concrete framework for generating new service ideas using an M&A dataset. Addressing the limitations of previous works that neglected service-specific characteristics, we suggest methods to extract service-specific keywords and phrases from the text and restructure them to provide clear evidence for new service development. Therefore, we propose a process for building data-driven quality function deployment (QFD) and data-driven morphological analysis (MA). First, M&A transactions were collected from CrunchBase, which is an open platform that provides start-up information. Service actions and service contents are then extracted from the text using natural language processing. For each extracted keyword, a clustering analysis was performed to identify the new service patterns. For clustered service actions and contents, MA is employed to generate new service ideas. This study contributes to the technology management field by first employing M&A records for the data-driven morphological matrix and suggests how to extract service actions and service contents from the text. We also suggested a new systematic way of identifying new services using an integrated approach of QFD and MA. This work is expected to help managers in new service development by providing practical guidance and tools for utilizing textual data.

Suggested Citation

  • Ha, Sohee & Geum, Youngjung, 2022. "Identifying new innovative services using M&A data: An integrated approach of data-driven morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:tefoso:v:174:y:2022:i:c:s0040162521006302
    DOI: 10.1016/j.techfore.2021.121197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521006302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.121197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sojung Kim & Byungun Yoon, 2012. "Developing a process of concept generation for new product-service systems: a QFD and TRIZ-based approach," Service Business, Springer;Pan-Pacific Business Association, vol. 6(3), pages 323-348, September.
    2. Kim, Kun & Park, Oun-joung & Yun, Seunghyun & Yun, Haejung, 2017. "What makes tourists feel negatively about tourism destinations? Application of hybrid text mining methodology to smart destination management," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 362-369.
    3. O'Brien, Frances A. & Meadows, Maureen & Griffiths, Sam, 2017. "Serialisation and the use of Twitter: Keeping the conversation alive in public policy scenario projects," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 26-40.
    4. David A. Hull, 1996. "Stemming algorithms: A case study for detailed evaluation," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 47(1), pages 70-84, January.
    5. Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
    6. Kayser, Victoria & Shala, Erduana, 2020. "Scenario development using web mining for outlining technology futures," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    7. Atanu Sengupta & Sanjoy De, 2020. "Review of Literature," India Studies in Business and Economics, in: Assessing Performance of Banks in India Fifty Years After Nationalization, chapter 0, pages 15-30, Springer.
    8. Geum, Youngjung & Park, Yongtae, 2016. "How to generate creative ideas for innovation: a hybrid approach of WordNet and morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 176-187.
    9. Ju, Yonghan & Sohn, So Young, 2015. "Patent-based QFD framework development for identification of emerging technologies and related business models: A case of robot technology in Korea," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 44-64.
    10. Hakyeon Lee & Hyunju Seol & Hyejong Min & Youngjung Geum, 2017. "The identification of new service opportunities: a case-based morphological analysis," Service Business, Springer;Pan-Pacific Business Association, vol. 11(1), pages 191-206, March.
    11. Johansen, Iver, 2018. "Scenario modelling with morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 116-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingyu Park & Youngjung Geum, 2021. "On the data-driven generation of new service idea: integrated approach of morphological analysis and text mining," Service Business, Springer;Pan-Pacific Business Association, vol. 15(3), pages 539-561, September.
    2. Zhenfeng Liu & Jian Feng & Jinfeng Wang, 2020. "Resource-Constrained Innovation Method for Sustainability: Application of Morphological Analysis and TRIZ Inventive Principles," Sustainability, MDPI, vol. 12(3), pages 1-23, January.
    3. Kwon, Heeyeul & Park, Yongtae & Geum, Youngjung, 2018. "Toward data-driven idea generation: Application of Wikipedia to morphological analysis," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 56-80.
    4. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    5. Cristina Blasi Casagran & Colleen Boland & Elena Sánchez-Montijano & Eva Vilà Sanchez, 2021. "The Role of Emerging Predictive IT Tools in Effective Migration Governance," Politics and Governance, Cogitatio Press, vol. 9(4), pages 133-145.
    6. He Tingting, 2021. "Comparing Money and Time Donation: What Do Experiments Tell Us?," Marketing of Scientific and Research Organizations, Sciendo, vol. 41(3), pages 65-94, September.
    7. Alberto Cerezo-Narváez & Andrés Pastor-Fernández & Manuel Otero-Mateo & Pablo Ballesteros-Pérez, 2022. "The Influence of Knowledge on Managing Risk for the Success in Complex Construction Projects: The IPMA Approach," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    8. Rafidah Md Noor & Nadia Bella Gustiani Rasyidi & Tarak Nandy & Raenu Kolandaisamy, 2020. "Campus Shuttle Bus Route Optimization Using Machine Learning Predictive Analysis: A Case Study," Sustainability, MDPI, vol. 13(1), pages 1-24, December.
    9. Dominika Ehrenbergerová & Martin Hodula & Zuzana Gric, 2022. "Does capital-based regulation affect bank pricing policy?," Journal of Regulatory Economics, Springer, vol. 61(2), pages 135-167, April.
    10. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    11. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    12. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    13. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    14. Mohammed Khaled Al-Hanawi & Rubayyat Hashmi & Sarh Almubark & Ameerah M. N. Qattan & Mohammad Habibullah Pulok, 2020. "Socioeconomic Inequalities in Uptake of Breast Cancer Screening among Saudi Women: A Cross-Sectional Analysis of a National Survey," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    15. Ortega, José Luis, 2021. "How do media mention research papers? Structural analysis of blogs and news networks using citation coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    16. Richard Grieveson & Michael Landesmann & Isilda Mara, 2021. "Potential Mobility from Africa, Middle East and EU Neighbouring Countries to Europe," wiiw Working Papers 199, The Vienna Institute for International Economic Studies, wiiw.
    17. Pham, Hanh Song Thi & Petersen, Bent, 2021. "The bargaining power, value capture, and export performance of Vietnamese manufacturers in global value chains," International Business Review, Elsevier, vol. 30(6).
    18. Wafa Alwakid & Sebastian Aparicio & David Urbano, 2021. "The Influence of Green Entrepreneurship on Sustainable Development in Saudi Arabia: The Role of Formal Institutions," IJERPH, MDPI, vol. 18(10), pages 1-23, May.
    19. Gary Gereffi, 2020. "What does the COVID-19 pandemic teach us about global value chains? The case of medical supplies," Journal of International Business Policy, Palgrave Macmillan, vol. 3(3), pages 287-301, September.
    20. E. Denny, 2022. "Long-term Energy Cost Labelling for Appliances: Evidence from a Randomised Controlled Trial in Ireland," Journal of Consumer Policy, Springer, vol. 45(3), pages 369-409, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:174:y:2022:i:c:s0040162521006302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.