IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v178y2022ics0040162522000816.html
   My bibliography  Save this article

Dynamic modeling for product family evolution combined with artificial neural network based forecasting model: A study of iPhone evolution

Author

Listed:
  • Biswas, Sumana
  • Ali, Ismail
  • Chakrabortty, Ripon K.
  • Turan, Hasan Hüseyin
  • Elsawah, Sondoss
  • Ryan, Michael J.

Abstract

Products continuously evolve over time. Realizing the pattern of product family evolution along with proper estimation of features for future products has been regarded as a critical issue for business success. Focusing on this issue, a dynamic model for product family evolution combined with forecasting is proposed in this research work. The proposed model considers the influence of market demand, customer needs and technological requirements that are time-dependent. The methodology is a four-phase model. In this model the evaluations of product family evolution are based on the Grey Relational Analysis and Fuzzy Analytical Hierarchy Process. Sensitivity is performed to investigate the reliability of the model. In addition, a data-driven neural network-based forecasting model is proposed that can forecast the specification of the most influential features of future product with a reasonable accuracy. This forecasting model utilizes the information of the previous generation’s product. For each phase, the effectiveness of the developed approach is demonstrated with numerical simulation results and validated with a case study of Apple’s iPhone product family. The case study shows that the approach is very effective to identify the most influential key design features and best performed products that will influence the evolution design of future product.

Suggested Citation

  • Biswas, Sumana & Ali, Ismail & Chakrabortty, Ripon K. & Turan, Hasan Hüseyin & Elsawah, Sondoss & Ryan, Michael J., 2022. "Dynamic modeling for product family evolution combined with artificial neural network based forecasting model: A study of iPhone evolution," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522000816
    DOI: 10.1016/j.techfore.2022.121549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522000816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Heng & Özer, Özalp, 2009. "Managing a product family under stochastic technological changes," International Journal of Production Economics, Elsevier, vol. 122(2), pages 567-580, December.
    2. Egidijus Rytas Vaidogas & Jurgita Šakėnaitė, 2015. "Solving the Problem of Multiple-Criteria Building Design Decisions with respect to the Fire Safety of Occupants: An Approach Based on Probabilistic Modelling," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-18, August.
    3. Runliang Dou & Yubo Zhang & Guofang Nan, 2017. "Iterative product design through group opinion evolution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3886-3905, July.
    4. Filippi, S. & Barattin, D., 2014. "Definition and exploitation of trends of evolution about interaction," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 216-236.
    5. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    6. Haizhu Zhang & Shengfeng Qin & Rong Li & Yisheng Zou & Guofu Ding, 2020. "Progressive modelling of feature-centred product family development," International Journal of Production Research, Taylor & Francis Journals, vol. 58(12), pages 3701-3723, June.
    7. Lee, Hakyeon & Kim, Sang Gook & Park, Hyun-woo & Kang, Pilsung, 2014. "Pre-launch new product demand forecasting using the Bass model: A statistical and machine learning-based approach," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 49-64.
    8. Fu-ying Zhang & Yan-shen Xu, 2007. "Research on technical strategy for new product development based on TRIZ evolution theory," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 4(1/2), pages 96-108.
    9. Meyer, Marc H. & Utterback, James M., 1941-, 1992. "The product family and the dynamics of core capability," Working papers #77-92. Working paper (Sl, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    10. Johnna Montgomerie & Samuel Roscoe, 2013. "Owning the consumer—Getting to the core of the Apple business model," Accounting Forum, Taylor & Francis Journals, vol. 37(4), pages 290-299, December.
    11. Golmohammadi, Davood, 2011. "Neural network application for fuzzy multi-criteria decision making problems," International Journal of Production Economics, Elsevier, vol. 131(2), pages 490-504, June.
    12. Montgomerie, Johnna & Roscoe, Samuel, 2013. "Owning the consumer—Getting to the core of the Apple business model," Accounting forum, Elsevier, vol. 37(4), pages 290-299.
    13. Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zichao & Li, Dexuan & Dai, Wensheng, 2023. "Machine-learning-enabled intelligence computing for crisis management in small and medium-sized enterprises (SMEs)," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    2. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    3. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Wenbin Zhou & Xuhui Xia & Lei Wang & Zelin Zhang & Baotong Chen, 2022. "A Product Evolution Rules Based Method for Retired Mechanical Product Demand Acquisition," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan Rumble & Vincent Mangematin, 2015. "Business Model Implementation: The Antecedents of Multi-Sidedness," Post-Print hal-01183388, HAL.
    2. Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    5. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    6. Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
    7. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    8. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    9. Golmohammadi, Davood & Radnia, Naeimeh, 2016. "Prediction modeling and pattern recognition for patient readmission," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 151-161.
    10. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    11. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    12. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    13. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    14. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    15. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    16. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    17. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    18. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    19. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    20. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:178:y:2022:i:c:s0040162522000816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.