Demand identification model of potential technology based on SAO structure semantic analysis: The case of new energy and energy saving fields
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techsoc.2019.02.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
- Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
- Giovanni Abramo & Andrea D'Angelo, 2009. "The alignment of public research supply and industry demand for effective technology transfer: the case of Italy," Science and Public Policy, Oxford University Press, vol. 36(1), pages 2-14, February.
- Xiao Li & Qingsheng Li, 2015. "Calculation of Sentence Semantic Similarity Based on Syntactic Structure," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, October.
- Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
- Franco Malerba, 2006.
"Innovation and the evolution of industries,"
Journal of Evolutionary Economics, Springer, vol. 16(1), pages 3-23, April.
- Franco Malerba, 2005. "Innovation and the evolution of industries," KITeS Working Papers 172, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jul 2005.
- Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
- Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
- Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
- Shin, Jungwoo & Lee, Chul-Yong & Kim, Hongbum, 2016. "Technology and demand forecasting for carbon capture and storage technology in South Korea," Energy Policy, Elsevier, vol. 98(C), pages 1-11.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Yuan & Ofori, Elvis Kwame & Tao, Li & Lucey, Brian & Abedin, Mohammad Zoynul, 2024. "Combination of antecedent conditions affecting the development of Chinese new energy market based on fuzzy sets," Research in International Business and Finance, Elsevier, vol. 71(C).
- Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
- Wang, Xiaoli & Huang, Lucheng & Daim, Tugrul & Li, Xin & Li, Zhiqiang, 2021. "Evaluation of China's new energy vehicle policy texts with quantitative and qualitative analysis," Technology in Society, Elsevier, vol. 67(C).
- Xia, Hui & Dai, Ling & Sun, Liping & Chen, Xi & Li, Yuening & Zheng, Yihan & Peng, Yanlai & Wu, Kaiya, 2023. "Analysis of the spatiotemporal distribution pattern and driving factors of renewable energy power generation in China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 414-428.
- Pan, Yuling & Dong, Feng, 2022. "Dynamic evolution and driving factors of new energy development: Fresh evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
- Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
- Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
- Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
- Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
- Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
- Gaizka Garechana & Rosa Río-Belver & Enara Zarrabeitia & Izaskun Alvarez-Meaza, 2022. "TeknoAssistant : a domain specific tech mining approach for technical problem-solving support," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5459-5473, September.
- Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
- Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
- Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
- Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
- Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
- Linares, Ian Marques Porto & De Paulo, Alex Fabianne & Porto, Geciane Silveira, 2019. "Patent-based network analysis to understand technological innovation pathways and trends," Technology in Society, Elsevier, vol. 59(C).
- Moon, Seungyeon & Lee, Heesang, 2024. "Identifying technological opportunities using enhanced tech mining: The case of the E-health industry," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
- Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
- An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
- Seo, Wonchul & Yoon, Janghyeok & Park, Hyunseok & Coh, Byoung-youl & Lee, Jae-Min & Kwon, Oh-Jin, 2016. "Product opportunity identification based on internal capabilities using text mining and association rule mining," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 94-104.
- Guo, Junfang & Wang, Xuefeng & Li, Qianrui & Zhu, Donghua, 2016. "Subject–action–object-based morphology analysis for determining the direction of technological change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 27-40.
More about this item
Keywords
SAO structure analysis; Semantic similarity; Technology demand hotspots identification; Technical lifecycle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:58:y:2019:i:c:s0160791x18300502. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.