IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v167y2021ics0040162521001232.html
   My bibliography  Save this article

R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data

Author

Listed:
  • Han, Xiaotong
  • Zhu, Donghua
  • Lei, Ming
  • Daim, Tugrul

Abstract

Formulating good R&D strategy requires sound knowledge of the past and present R&D trends in various industry sectors. Therefore, this paper outlines a framework for mining industry level R&D trends from patents that were designed for enterprises. Unlike the current alternatives, the approach presented here considers both patent applications and invalidated patents, i.e., those patents that have expired, lapsed, or been revoked. The result is a richer and more comprehensive analysis that covers the full lifespan of a targeted technology from emergence to decline. The framework comprises of a LDA topic model that identifies the technologies and sub-technologies, and of each individual patent and invalidated patent. Then, two specifically designed measures chart the stages of the technologies’ life. An application metric reflects annual levels of interest in an area, while an invalidation metric traces waning interest. The output is a series of trend maps that show the levels of interest and disinterest in different avenues of inquiry over time. Charted on different axes, these two metrics create two distinct trend lines that reflect the different changes over a technology's lifecycle. A case study that focused on China's 3-D printing technology illustrates the approach. The analysis results are highly consistent with the present technology trends across industries, which indicates that the method could serve as a useful reference tool for analyzing R&D trends and creating new R&D strategies.

Suggested Citation

  • Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:tefoso:v:167:y:2021:i:c:s0040162521001232
    DOI: 10.1016/j.techfore.2021.120691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521001232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.120691?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
    2. Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
    3. Won Sang Lee & So Young Sohn, 2017. "Identifying Emerging Trends of Financial Business Method Patents," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    4. Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
    5. Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
    6. Penrose, Edith, 2009. "The Theory of the Growth of the Firm," OUP Catalogue, Oxford University Press, edition 4, number 9780199573844.
    7. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    8. Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
    9. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    10. Lee, Mingook & Lee, Sungjoo, 2017. "Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 170-183.
    11. Momeni, Abdolreza & Rost, Katja, 2016. "Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 16-29.
    12. Li, Shuying & Garces, Edwin & Daim, Tugrul, 2019. "Technology forecasting by analogy-based on social network analysis: The case of autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    13. Bo Wang & Shengbo Liu & Kun Ding & Zeyuan Liu & Jing Xu, 2014. "Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 685-704, October.
    14. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    15. Xuefeng Wang & Pingping Ma & Ying Huang & Junfang Guo & Donghua Zhu & Alan L. Porter & Zhinan Wang, 2017. "Combining SAO semantic analysis and morphology analysis to identify technology opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 3-24, April.
    16. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
    17. Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
    18. Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
    19. Byunghoon Kim & Gianluca Gazzola & Jae-Min Lee & Dohyun Kim & Kanghoe Kim & Myong K. Jeong, 2014. "Inter-cluster connectivity analysis for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1811-1825, March.
    20. Sungchul Choi & Janghyeok Yoon & Kwangsoo Kim & Jae Yeol Lee & Cheol-Han Kim, 2011. "SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 863-883, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    2. Yogesh K. Dwivedi & A. Sharma & Nripendra P. Rana & M. Giannakis & P. Goel & Vincent Dutot, 2023. "Evolution of Artificial Intelligence Research in Technological Forecasting and Social Change: Research Topics, Trends, and Future Directions," Post-Print hal-04292607, HAL.
    3. Garza Ramos, Alejandro & Daim, Tugrul & Gaats, Lukas & Hutmacher, Dietmar W. & Hackenberger, David, 2022. "Technology roadmap for the development of a 3D cell culture workstation for a biomedical industry startup," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    4. Naeini, Ali Bonyadi & Zamani, Mehdi & Daim, Tugrul U. & Sharma, Mahak & Yalcin, Haydar, 2022. "Conceptual structure and perspectives on “innovation management”: A bibliometric review," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    6. Choi, Jaewoong & Yoon, Janghyeok, 2022. "Measuring knowledge exploration distance at the patent level: Application of network embedding and citation analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    7. Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    2. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    3. Lee, Jiho & Ko, Namuk & Yoon, Janghyeok & Son, Changho, 2021. "An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    4. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    5. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.
    6. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    7. Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    8. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    9. Kyuwoong Kim & Kyeongmin Park & Sungjoo Lee, 2019. "Investigating technology opportunities: the use of SAOx analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 45-70, January.
    10. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    12. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    13. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
    14. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    15. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
    16. Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
    17. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    18. An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
    19. Lee, MyoungHoon & Kim, Suhyeon & Kim, Hangyeol & Lee, Junghye, 2022. "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    20. Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:167:y:2021:i:c:s0040162521001232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.