IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v17y2023i2s1751157723000238.html
   My bibliography  Save this article

Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining

Author

Listed:
  • Wu, Yingwen
  • Ji, Yangjian

Abstract

Technology opportunity discovery (TOD) is a starting point for firms to conduct research and development (R&D) activities. Although researchers have suggested diverse methods for studying firm-specific TOD, there is a lack of research that makes the best use of competitors’ roles to identify technology opportunities. In addition, the evaluation of candidate technology opportunities only focuses on the current potential of technologies. Therefore, this paper proposes a novel approach to identifying technology opportunities from the perspective of competitors using an improved association rule mining (ARM) algorithm named Two-Phase Frequent Item Mining-Customised Association Rule Mining (TPFIM-CARM). The proposed approach involves: 1) mining frequent itemsets of technologies from the patent dataset of the target firm's competitors, 2) discovering strong association rules of technologies and recommending candidate technology opportunities based on the technology portfolio of the target firm, and 3) evaluating technology opportunities by predicting indicators of technology importance and technology effects with polynomial ridge regression. The effectiveness of the proposed approach is validated by a case study of the General Motors Company (GM). The study extends the TOD literature by identifying technology opportunities from the perspective of competitors and provides a forward-looking evaluation idea, which can be used in both TOD and other studies on technology and innovation management.

Suggested Citation

  • Wu, Yingwen & Ji, Yangjian, 2023. "Identifying firm-specific technology opportunities from the perspective of competitors by using association rule mining," Journal of Informetrics, Elsevier, vol. 17(2).
  • Handle: RePEc:eee:infome:v:17:y:2023:i:2:s1751157723000238
    DOI: 10.1016/j.joi.2023.101398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157723000238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2023.101398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Shuying & Zhang, Xian & Xu, Haiyun & Fang, Shu & Garces, Edwin & Daim, Tugrul, 2020. "Measuring strategic technological strength :Patent Portfolio Model," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    2. Kim, Hyunwoo & Hong, Suckwon & Kwon, Ohjin & Lee, Changyong, 2017. "Concentric diversification based on technological capabilities: Link analysis of products and technologies," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 246-257.
    3. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    4. Lee, Mingook & Lee, Sungjoo, 2017. "Identifying new business opportunities from competitor intelligence: An integrated use of patent and trademark databases," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 170-183.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    7. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    8. Abbasi, Alireza & Altmann, Jörn & Hossain, Liaquat, 2011. "Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures," Journal of Informetrics, Elsevier, vol. 5(4), pages 594-607.
    9. Ola Olsson, 2005. "Technological Opportunity and Growth," Journal of Economic Growth, Springer, vol. 10(1), pages 31-53, January.
    10. Lee, Jiho & Ko, Namuk & Yoon, Janghyeok & Son, Changho, 2021. "An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    11. Gnyawali, Devi R. & Park, Byung-Jin (Robert), 2011. "Co-opetition between giants: Collaboration with competitors for technological innovation," Research Policy, Elsevier, vol. 40(5), pages 650-663, June.
    12. Baumann, Manuel & Domnik, Tobias & Haase, Martina & Wulf, Christina & Emmerich, Philip & Rösch, Christine & Zapp, Petra & Naegler, Tobias & Weil, Marcel, 2021. "Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    13. Peter L Bradshaw & Jonathan F Colville & H Peter Linder, 2015. "Optimising Regionalisation Techniques: Identifying Centres of Endemism in the Extraordinarily Endemic-Rich Cape Floristic Region," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-30, July.
    14. Park, Inchae & Yoon, Byungun, 2018. "Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network," Journal of Informetrics, Elsevier, vol. 12(4), pages 1199-1222.
    15. Luca Cagliero & Paolo Garza & Mohammad Reza Kavoosifar & Elena Baralis, 2018. "Discovering cross-topic collaborations among researchers by exploiting weighted association rules," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1273-1301, August.
    16. Changyong Lee & Suckwon Hong & Juram Kim, 2021. "Anticipating multi-technology convergence: a machine learning approach using patent information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 1867-1896, March.
    17. Wang, Ming-Yeu & Fang, Shih-Chieh & Chang, Yu-Hsuan, 2015. "Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 182-195.
    18. Tian, Guo-Liang, 1998. "The comparison between polynomial regression and orthogonal polynomial regression," Statistics & Probability Letters, Elsevier, vol. 38(4), pages 289-294, July.
    19. Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
    20. Kathryn Rudie Harrigan & Yunzhe Fang, 2019. "Financial implications of technology-class code popularity and usage among industry competitors," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 25-51, October.
    21. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    22. Choi, Jaewoong & Jeong, Byeongki & Yoon, Janghyeok, 2019. "Technology opportunity discovery under the dynamic change of focus technology fields: Application of sequential pattern mining to patent classifications," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    23. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    24. Huang, Ying & Chen, Lixin & Zhang, Lin, 2020. "Patent citation inflation: The phenomenon, its measurement, and relative indicators to temper its effects," Journal of Informetrics, Elsevier, vol. 14(2).
    25. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    26. Seo, Wonchul & Yoon, Janghyeok & Park, Hyunseok & Coh, Byoung-youl & Lee, Jae-Min & Kwon, Oh-Jin, 2016. "Product opportunity identification based on internal capabilities using text mining and association rule mining," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 94-104.
    27. Song, Kisik & Kim, Karp Soo & Lee, Sungjoo, 2017. "Discovering new technology opportunities based on patents: Text-mining and F-term analysis," Technovation, Elsevier, vol. 60, pages 1-14.
    28. Yoon, Byungun & Park, Inchae & Coh, Byoung-youl, 2014. "Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 287-303.
    29. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    30. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    2. Seol, Youngjin & Lee, Seunghyun & Kim, Cheolhan & Yoon, Janghyeok & Choi, Jaewoong, 2023. "Towards firm-specific technology opportunities: A rule-based machine learning approach to technology portfolio analysis," Journal of Informetrics, Elsevier, vol. 17(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    2. Seol, Youngjin & Lee, Seunghyun & Kim, Cheolhan & Yoon, Janghyeok & Choi, Jaewoong, 2023. "Towards firm-specific technology opportunities: A rule-based machine learning approach to technology portfolio analysis," Journal of Informetrics, Elsevier, vol. 17(4).
    3. Teng, Fei & Sun, Yuling & Chen, Fang & Qin, Aning & Zhang, Qi, 2021. "Technology opportunity discovery of proton exchange membrane fuel cells based on generative topographic mapping," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    4. Choi, Jaewoong & Lee, Changyong & Yoon, Janghyeok, 2023. "Exploring a technology ecology for technology opportunity discovery: A link prediction approach using heterogeneous knowledge graphs," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    5. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    6. Lee, MyoungHoon & Kim, Suhyeon & Kim, Hangyeol & Lee, Junghye, 2022. "Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    7. Motohashi, Kazuyuki & Zhu, Chen, 2023. "Identifying technology opportunity using dual-attention model and technology-market concordance matrix," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    8. Lee, Jiho & Ko, Namuk & Yoon, Janghyeok & Son, Changho, 2021. "An approach for discovering firm-specific technology opportunities: Application of link prediction to F-term networks," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    9. Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    10. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    11. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    12. Yun, Siyeong & Song, Kisik & Kim, Chulhyun & Lee, Sungjoo, 2021. "From stones to jewellery: Investigating technology opportunities from expired patents," Technovation, Elsevier, vol. 103(C).
    13. Choi, Jaewoong & Jeong, Byeongki & Yoon, Janghyeok, 2019. "Technology opportunity discovery under the dynamic change of focus technology fields: Application of sequential pattern mining to patent classifications," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    14. Choi, Kwang Hun & Kwon, Gyu Hyun, 2023. "Strategies for sensing innovation opportunities in smart grids: In the perspective of interactive relationships between science, technology, and business," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    15. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    16. Ba, Zhichao & Meng, Kai & Ma, Yaxue & Xia, Yikun, 2024. "Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    17. Jing Ma & Yaohui Pan & Chih-Yi Su, 2022. "Organization-oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer’s disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5497-5517, September.
    18. Lijie Feng & Yuxiang Niu & Zhenfeng Liu & Jinfeng Wang & Ke Zhang, 2019. "Discovering Technology Opportunity by Keyword-Based Patent Analysis: A Hybrid Approach of Morphology Analysis and USIT," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    19. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    20. Shen, Yung-Chi & Wang, Ming-Yeu & Yang, Ya-Chu, 2020. "Discovering the potential opportunities of scientific advancement and technological innovation: A case study of smart health monitoring technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:17:y:2023:i:2:s1751157723000238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.