IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v53y2016icp10-22.html
   My bibliography  Save this item

Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
  2. Bloess, Andreas, 2019. "Impacts of heat sector transformation on Germany’s power system through increased use of power-to-heat," Applied Energy, Elsevier, vol. 239(C), pages 560-580.
  3. O’Reilly, Ryan & Cohen, Jed & Reichl, Johannes, 2024. "Achievable load shifting potentials for the European residential sector from 2022–2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  4. Ulf Philipp Müller & Birgit Schachler & Malte Scharf & Wolf-Dieter Bunke & Stephan Günther & Julian Bartels & Guido Pleßmann, 2019. "Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids," Energies, MDPI, vol. 12(11), pages 1-30, May.
  5. Kubli, Merla & Loock, Moritz & Wüstenhagen, Rolf, 2018. "The flexible prosumer: Measuring the willingness to co-create distributed flexibility," Energy Policy, Elsevier, vol. 114(C), pages 540-548.
  6. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
  7. Diestelmeier, Lea, 2019. "Changing power: Shifting the role of electricity consumers with blockchain technology – Policy implications for EU electricity law," Energy Policy, Elsevier, vol. 128(C), pages 189-196.
  8. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
  9. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
  10. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
  11. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
  12. Karl-Kiên Cao & Johannes Metzdorf & Sinan Birbalta, 2018. "Incorporating Power Transmission Bottlenecks into Aggregated Energy System Models," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
  13. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
  14. Jun Zhao & Bo Shen, 2019. "The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China," Energies, MDPI, vol. 12(12), pages 1-22, June.
  15. Jeong, Jaehui & Jung, Han Sol & Lee, Jae Won & Kang, Yong Tae, 2023. "Hybrid cooling and heating absorption heat pump cycle with thermal energy storage," Energy, Elsevier, vol. 283(C).
  16. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  17. Ryosuke Kataoka & Kazuhiko Ogimoto & Yumiko Iwafune, 2021. "Marginal Value of Vehicle-to-Grid Ancillary Service in a Power System with Variable Renewable Energy Penetration and Grid Side Flexibility," Energies, MDPI, vol. 14(22), pages 1-21, November.
  18. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
  19. Karl-Kiên Cao & Kai von Krbek & Manuel Wetzel & Felix Cebulla & Sebastian Schreck, 2019. "Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models," Energies, MDPI, vol. 12(24), pages 1-51, December.
  20. Wang, Zhaohua & Li, Jingyun & Wang, Bo & Hui, Ng Szu & Lu, Bin & Wang, Can & Xu, Shuling & Zhou, Zixuan & Zhang, Bin & Zheng, Yufeng, 2024. "The decarbonization pathway of power system by high-resolution model under different policy scenarios in China," Applied Energy, Elsevier, vol. 355(C).
  21. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
  22. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
  23. Li, Jia & Liu, Feng & Li, Zuyi & Shao, Chengcheng & Liu, Xinyuan, 2018. "Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 272-284.
  24. Ju, Chang & Ding, Tao & Jia, Wenhao & Mu, Chenggang & Zhang, Hongji & Sun, Yuge, 2023. "Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations," Applied Energy, Elsevier, vol. 334(C).
  25. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
  26. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
  27. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
  28. Deng, Xu & Lv, Tao & Hou, Xiaoran & Xu, Jie & Pi, Duyang & Liu, Feng & Li, Na, 2022. "Regional disparity of flexibility options for integrating variable renewable energy," Renewable Energy, Elsevier, vol. 192(C), pages 641-654.
  29. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
  30. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
  31. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
  32. Chi Kong Chyong & Michael Pollitt & David M. Reiner & Carmen Li, 2023. "Modelling flexibility requirements in European 2050 deep decarbonisation scenarios: the role of conventional flexibility and sector coupling options," Working Papers EPRG2302, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  33. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
  34. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2019. "Multi-temporal assessment of power system flexibility requirement," Applied Energy, Elsevier, vol. 238(C), pages 1327-1336.
  35. Yang, Sheng & Liu, Beilin & Li, Xiaolong & Liu, Zhiqiang & Liu, Yue & Xie, Nan & Ren, Jingzheng, 2023. "Flexibility index for a distributed energy system design optimization," Renewable Energy, Elsevier, vol. 219(P1).
  36. Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
  37. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
  38. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  39. Lukas Löhr & Raphael Houben & Carolin Guntermann & Albert Moser, 2022. "Nested Decomposition Approach for Dispatch Optimization of Large-Scale, Integrated Electricity, Methane and Hydrogen Infrastructures," Energies, MDPI, vol. 15(8), pages 1-25, April.
  40. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  41. Olkkonen, Ville & Rinne, Samuli & Hast, Aira & Syri, Sanna, 2017. "Benefits of DSM measures in the future Finnish energy system," Energy, Elsevier, vol. 137(C), pages 729-738.
  42. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
  43. Perera, A.T.D. & Nik, Vahid M. & Mauree, Dasaraden & Scartezzini, Jean-Louis, 2017. "An integrated approach to design site specific distributed electrical hubs combining optimization, multi-criterion assessment and decision making," Energy, Elsevier, vol. 134(C), pages 103-120.
  44. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
  45. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
  46. Ronny Gelleschus & Michael Böttiger & Thilo Bocklisch, 2019. "Optimization-Based Control Concept with Feed-in and Demand Peak Shaving for a PV Battery Heat Pump Heat Storage System," Energies, MDPI, vol. 12(11), pages 1-16, June.
  47. Ricks, Wilson & Norbeck, Jack & Jenkins, Jesse, 2022. "The value of in-reservoir energy storage for flexible dispatch of geothermal power," Applied Energy, Elsevier, vol. 313(C).
  48. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  49. Stefano Dettori & Alessandro Maddaloni & Filippo Galli & Valentina Colla & Federico Bucciarelli & Damaso Checcacci & Annamaria Signorini, 2021. "Steam Turbine Rotor Stress Control through Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(13), pages 1-30, July.
  50. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
  51. Neetzow, Paul, 2021. "The effects of power system flexibility on the efficient transition to renewable generation," Applied Energy, Elsevier, vol. 283(C).
  52. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
  53. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
  54. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
  55. Harder, Nick & Qussous, Ramiz & Weidlich, Anke, 2020. "The cost of providing operational flexibility from distributed energy resources," Applied Energy, Elsevier, vol. 279(C).
  56. Zhao, Mingzhe & Wang, Yimin & Wang, Xuebin & Chang, Jianxia & Chen, Yunhua & Zhou, Yong & Guo, Aijun, 2022. "Flexibility evaluation of wind-PV-hydro multi-energy complementary base considering the compensation ability of cascade hydropower stations," Applied Energy, Elsevier, vol. 315(C).
  57. Martínez-Jaramillo, Juan Esteban & van Ackere, Ann & Larsen, Erik, 2023. "Long term impacts of climate change on the transition towards renewables in Switzerland," Energy, Elsevier, vol. 263(PE).
  58. Heidari, Amirreza & Maréchal, François & Khovalyg, Dolaana, 2022. "Reinforcement Learning for proactive operation of residential energy systems by learning stochastic occupant behavior and fluctuating solar energy: Balancing comfort, hygiene and energy use," Applied Energy, Elsevier, vol. 318(C).
  59. Rinaldi, Arthur & Yilmaz, Selin & Patel, Martin K. & Parra, David, 2022. "What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  60. Rinaldi, Arthur & Soini, Martin Christoph & Streicher, Kai & Patel, Martin K. & Parra, David, 2021. "Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation," Applied Energy, Elsevier, vol. 282(PB).
  61. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  62. Kristiansen, Martin & Korpås, Magnus & Svendsen, Harald G., 2018. "A generic framework for power system flexibility analysis using cooperative game theory," Applied Energy, Elsevier, vol. 212(C), pages 223-232.
  63. Hrnčić, Boris & Pfeifer, Antun & Jurić, Filip & Duić, Neven & Ivanović, Vladan & Vušanović, Igor, 2021. "Different investment dynamics in energy transition towards a 100% renewable energy system," Energy, Elsevier, vol. 237(C).
  64. Miklós Gyalai-Korpos & László Zentkó & Csaba Hegyfalvi & Gergely Detzky & Péter Tildy & Nóra Hegedűsné Baranyai & Gábor Pintér & Henrik Zsiborács, 2020. "The Role of Electricity Balancing and Storage: Developing Input Parameters for the European Calculator for Concept Modeling," Sustainability, MDPI, vol. 12(3), pages 1-26, January.
  65. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
  66. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
  67. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  68. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
  69. Dahlke, Steven & Sterling, John & Meehan, Colin, 2019. "Policy and market drivers for advancing clean energy," OSF Preprints hsbry, Center for Open Science.
  70. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
  71. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
  72. Louisa Jane Di Felice & Maddalena Ripa & Mario Giampietro, 2018. "Deep Decarbonisation from a Biophysical Perspective: GHG Emissions of a Renewable Electricity Transformation in the EU," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
  73. Sergei Kulakov & Florian Ziel, 2019. "Determining Fundamental Supply and Demand Curves in a Wholesale Electricity Market," Papers 1903.11383, arXiv.org, revised Nov 2019.
  74. McPherson, Madeleine & Harvey, L.D. Danny & Karney, Bryan, 2017. "System design and operation for integrating variable renewable energy resources through a comprehensive characterization framework," Renewable Energy, Elsevier, vol. 113(C), pages 1019-1032.
  75. Ahn, Hyeunguk & Miller, William & Sheaffer, Paul & Tutterow, Vestal & Rapp, Vi, 2021. "Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the U.S," Energy Policy, Elsevier, vol. 157(C).
  76. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
  77. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
  78. Zhou, Wei & Chen, Jin, 2021. "Is R&D helpful for China’s energy technology and engineering industry to respond to external uncertainties?," Energy, Elsevier, vol. 226(C).
  79. Sigrist, L. & Lobato, E. & Rouco, L. & Gazzino, M. & Cantu, M., 2017. "Economic assessment of smart grid initiatives for island power systems," Applied Energy, Elsevier, vol. 189(C), pages 403-415.
  80. Göke, Leonard, 2021. "A graph-based formulation for modeling macro-energy systems," Applied Energy, Elsevier, vol. 301(C).
  81. Rúa, Jairo & Nord, Lars O., 2020. "Optimal control of flexible natural gas combined cycles with stress monitoring: Linear vs nonlinear model predictive control," Applied Energy, Elsevier, vol. 265(C).
  82. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
  83. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
  84. Abdilahi, Abdirahman M. & Mustafa, Mohd Wazir & Abujarad, Saleh Y. & Mustapha, Mamunu, 2018. "Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3101-3110.
  85. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
  86. Kohlhepp, Peter & Harb, Hassan & Wolisz, Henryk & Waczowicz, Simon & Müller, Dirk & Hagenmeyer, Veit, 2019. "Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: A review of international field studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 527-547.
  87. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin & Fridgen, Gilbert, 2021. "Renewable electricity business models in a post feed-in tariff era," Energy, Elsevier, vol. 216(C).
  88. Meha, Drilon & Pfeifer, Antun & Duić, Neven & Lund, Henrik, 2020. "Increasing the integration of variable renewable energy in coal-based energy system using power to heat technologies: The case of Kosovo," Energy, Elsevier, vol. 212(C).
  89. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
  90. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
  91. Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & István Háber & Gábor Pintér, 2018. "Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe," Energies, MDPI, vol. 11(6), pages 1-17, June.
  92. Beiron, Johanna & Montañés, Rubén M. & Normann, Fredrik & Johnsson, Filip, 2020. "Flexible operation of a combined cycle cogeneration plant – A techno-economic assessment," Applied Energy, Elsevier, vol. 278(C).
  93. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
  94. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  95. Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
  96. Winkler, Jenny & Pudlik, Martin & Ragwitz, Mario & Pfluger, Benjamin, 2016. "The market value of renewable electricity – Which factors really matter?," Applied Energy, Elsevier, vol. 184(C), pages 464-481.
  97. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
  98. Ziyuan Tang & Hasan Dinçer, 2019. "Selecting the House-of-Quality-Based Energy Investment Policies for the Sustainable Emerging Economies," Sustainability, MDPI, vol. 11(13), pages 1-22, June.
  99. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
  100. Zhang, Yao & Zhang, Yuxin & Gong, Chao & Dinçer, Hasan & Yüksel, Serhat, 2022. "An integrated hesitant 2-tuple Pythagorean fuzzy analysis of QFD-based innovation cost and duration for renewable energy projects," Energy, Elsevier, vol. 248(C).
  101. Martin Kristiansen & Magnus Korpås & Hossein Farahmand, 2018. "Towards a fully integrated North Sea offshore grid: An engineering‐economic assessment of a power link island," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
  102. Tudor Cioara & Marcel Antal & Claudia Daniela Antal (Pop) & Ionut Anghel & Massimo Bertoncini & Diego Arnone & Marilena Lazzaro & Marzia Mammina & Terpsichori-Helen Velivassaki & Artemis Voulkidis & Y, 2020. "Data Centers Optimized Integration with Multi-Energy Grids: Test Cases and Results in Operational Environment," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
  103. Verzijlbergh, R.A. & De Vries, L.J. & Dijkema, G.P.J. & Herder, P.M., 2017. "Institutional challenges caused by the integration of renewable energy sources in the European electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 660-667.
  104. O'Shaughnessy, Eric & Heeter, Jenny & Shah, Chandra & Koebrich, Sam, 2021. "Corporate acceleration of the renewable energy transition and implications for electric grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
  105. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.