IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2098-d236303.html
   My bibliography  Save this article

Optimization-Based Control Concept with Feed-in and Demand Peak Shaving for a PV Battery Heat Pump Heat Storage System

Author

Listed:
  • Ronny Gelleschus

    (Chair of Energy Storage Systems, Technische Universität Dresden, Helmholtzstr. 9, 01062 Dresden, Germany)

  • Michael Böttiger

    (Chair of Energy Storage Systems, Technische Universität Dresden, Helmholtzstr. 9, 01062 Dresden, Germany)

  • Thilo Bocklisch

    (Chair of Energy Storage Systems, Technische Universität Dresden, Helmholtzstr. 9, 01062 Dresden, Germany)

Abstract

The increasing share of renewable energies in the electricity sector promotes a more decentralized energy supply and the introduction of new flexibility options. These flexibility options provide degrees of freedom that should be used optimally. Therefore, in this paper, a model predictive control-based multi-objective optimizing energy management concept for a hybrid energy storage system, consisting of a photovoltaics (PV) plant, a battery, and a combined heat pump/heat storage device is presented. The concept’s objectives are minimal operation costs and reducing the power exchanged with the electrical grid while ensuring user comfort. In order to prove the concept to be viable and its objectives being fulfilled, investigations based on simulations of one year of operation have been carried out. Comparisons to a simple rule-based strategy and the same model predictive control scheme with ideal forecasts prove the concept’s viability while showing improvement potential in the treatment of nonlinear system behavior, caused by nonlinear battery losses, and of forecast uncertainties.

Suggested Citation

  • Ronny Gelleschus & Michael Böttiger & Thilo Bocklisch, 2019. "Optimization-Based Control Concept with Feed-in and Demand Peak Shaving for a PV Battery Heat Pump Heat Storage System," Energies, MDPI, vol. 12(11), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2098-:d:236303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    2. Kuboth, Sebastian & Heberle, Florian & König-Haagen, Andreas & Brüggemann, Dieter, 2019. "Economic model predictive control of combined thermal and electric residential building energy systems," Applied Energy, Elsevier, vol. 240(C), pages 372-385.
    3. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    4. Ashouri, Araz & Fux, Samuel S. & Benz, Michael J. & Guzzella, Lino, 2013. "Optimal design and operation of building services using mixed-integer linear programming techniques," Energy, Elsevier, vol. 59(C), pages 365-376.
    5. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    6. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerber, Daniel L. & Nordman, Bruce & Brown, Richard & Poon, Jason, 2023. "Cost analysis of distributed storage in AC and DC microgrids," Applied Energy, Elsevier, vol. 344(C).
    2. Sebastian Kuboth & Theresa Weith & Florian Heberle & Matthias Welzl & Dieter Brüggemann, 2020. "Experimental Long-Term Investigation of Model Predictive Heat Pump Control in Residential Buildings with Photovoltaic Power Generation," Energies, MDPI, vol. 13(22), pages 1-17, November.
    3. Alexander V. Klokov & Alexander S. Tutunin & Elizaveta S. Sharaborova & Aleksei A. Korshunov & Egor Y. Loktionov, 2023. "Inverter Heat Pumps as a Variable Load for Off-Grid Solar-Powered Systems," Energies, MDPI, vol. 16(16), pages 1-17, August.
    4. Manuel Kersic & Thilo Bocklisch & Michael Böttiger & Lisa Gerlach, 2020. "Coordination Mechanism for PV Battery Systems with Local Optimizing Energy Management," Energies, MDPI, vol. 13(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    2. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    3. Al Essa, Mohammed Jasim M., 2019. "Home energy management of thermostatically controlled loads and photovoltaic-battery systems," Energy, Elsevier, vol. 176(C), pages 742-752.
    4. Efkarpidis, Nikolaos A. & Vomva, Styliani A. & Christoforidis, Georgios C. & Papagiannis, Grigoris K., 2022. "Optimal day-to-day scheduling of multiple energy assets in residential buildings equipped with variable-speed heat pumps," Applied Energy, Elsevier, vol. 312(C).
    5. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    7. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    8. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    9. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    10. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    11. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    12. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    13. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    14. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    15. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    16. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    17. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    19. Sandoval, Diego & Goffin, Philippe & Leibundgut, Hansjürg, 2017. "How low exergy buildings and distributed electricity storage can contribute to flexibility within the demand side," Applied Energy, Elsevier, vol. 187(C), pages 116-127.
    20. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2098-:d:236303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.