IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v48y2015icp373-391.html
   My bibliography  Save this item

Review of solid–liquid phase change materials and their encapsulation technologies

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Zhishan & Alva, Guruprasad & Gu, Min & Fang, Guiyin, 2018. "Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials," Energy, Elsevier, vol. 157(C), pages 625-632.
  2. Wu, Taofen & Wu, Dan & Deng, Yong & Luo, Dajun & Wu, Fuzhong & Dai, Xinyi & Lu, Jia & Sun, Shuya, 2024. "Three-dimensional network-based composite phase change materials: Construction, structure, performance and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  3. Zhu, Xiao & Han, Liang & Lu, Yunfeng & Wei, Fei & Jia, Xilai, 2019. "Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes," Applied Energy, Elsevier, vol. 254(C).
  4. Feng, Daili & Feng, Yanhui & Qiu, Lin & Li, Pei & Zang, Yuyang & Zou, Hanying & Yu, Zepei & Zhang, Xinxin, 2019. "Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 578-605.
  5. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
  6. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  7. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
  8. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
  9. Lingyu Zheng & Xuelai Zhang & Weisan Hua & Xinfeng Wu & Fa Mao, 2021. "The Effect of Hydroxylated Multi-Walled Carbon Nanotubes on the Properties of Peg-Cacl 2 Form-Stable Phase Change Materials," Energies, MDPI, vol. 14(5), pages 1-17, March.
  10. Lu, Zhe & Wang, Sheliang & Ying, Honghao & Liu, Bo & Jia, Wurong & Xie, Jiangsheng & Sun, Yanwen, 2024. "Preparation and thermal properties of eutectic phase change materials (EPCMs) with nanographite addition for cold thermal energy storage," Energy, Elsevier, vol. 290(C).
  11. Evdoxia Paroutoglou & Peter Fojan & Leonid Gurevich & Göran Hultmark & Alireza Afshari, 2021. "Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials," Energies, MDPI, vol. 14(4), pages 1-15, February.
  12. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
  13. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
  14. Wang, Jie & Han, Weifang & Ge, Chunhua & Guan, Hongyu & Yang, Huizhi & Zhang, Xiangdong, 2019. "Form-stable oxalic acid dihydrate/glycolic acid-based composite PCMs for thermal energy storage," Renewable Energy, Elsevier, vol. 136(C), pages 657-663.
  15. Wei, Kun & Ma, Biao & Huang, Xiaofeng & Xiao, Yue & Liu, Huan, 2019. "Influence of NiTi alloy phase change heat-storage particles on thermophysical parameters, phase change heat-storage thermoregulation effect, and pavement performance of asphalt mixture," Renewable Energy, Elsevier, vol. 141(C), pages 431-443.
  16. Túlio Nascimento Porto & João M. P. Q. Delgado & Ana Sofia Guimarães & Hortência Luma Fernandes Magalhães & Gicelia Moreira & Balbina Brito Correia & Tony Freire de Andrade & Antonio Gilson Barbosa de, 2020. "Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings," Energies, MDPI, vol. 13(12), pages 1-32, June.
  17. Faraj, Khaireldin & Khaled, Mahmoud & Faraj, Jalal & Hachem, Farouk & Castelain, Cathy, 2020. "Phase change material thermal energy storage systems for cooling applications in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  18. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  19. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  20. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
  21. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
  22. Zhang, Shudong & Wang, Zhenyang, 2018. "Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2319-2331.
  23. Zeng, Ziya & Zhao, Bingchen & Wang, Ruzhu, 2023. "High-power-density packed-bed thermal energy storage using form-stable expanded graphite-based phase change composite," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  24. Mishra, Amit Kumar & Lahiri, B.B. & Philip, John, 2020. "Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage," Energy, Elsevier, vol. 191(C).
  25. Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
  26. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
  27. Lu, Wei & Yu, Anqi & Dong, Hao & He, Zhenglong & Liang, Yuntao & Liu, Weitao & Sun, Yong & Song, Shuanglin, 2023. "High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation," Energy, Elsevier, vol. 274(C).
  28. Zhang, Xiaoyu & Wang, Xiaodong & Wu, Dezhen, 2016. "Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectivene," Energy, Elsevier, vol. 111(C), pages 498-512.
  29. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
  30. Li, Chuanchang & Xie, Baoshan & Chen, Deliang & Chen, Jian & Li, Wei & Chen, Zhongsheng & Gibb, Stuart W. & Long, Yi, 2019. "Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage," Energy, Elsevier, vol. 166(C), pages 246-255.
  31. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
  32. Li, Chuanchang & Xie, Baoshan & He, Zhangxing & Chen, Jian & Long, Yi, 2019. "3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 140(C), pages 862-873.
  33. Dai, Jiasheng & Ma, Feng & Fu, Zhen & Li, Chen & Jia, Meng & Shi, Ke & Wen, Yalu & Wang, Wentong, 2021. "Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement," Renewable Energy, Elsevier, vol. 175(C), pages 748-759.
  34. Xiao, Qiangqiang & Fan, Jiaxin & Li, Li & Xu, Tao & Yuan, Wenhui, 2018. "Solar thermal energy storage based on sodium acetate trihydrate phase change hydrogels with excellent light-to-thermal conversion performance," Energy, Elsevier, vol. 165(PB), pages 1240-1247.
  35. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  36. Zhang, Yuang & Wang, Lingjuan & Tang, Bingtao & Lu, Rongwen & Zhang, Shufen, 2016. "Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure," Applied Energy, Elsevier, vol. 184(C), pages 241-246.
  37. Zhao, Manxiang & Zhang, Xu & Kong, Xiangfei, 2020. "Preparation and characterization of a novel composite phase change material with double phase change points based on nanocapsules," Renewable Energy, Elsevier, vol. 147(P1), pages 374-383.
  38. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  39. Huang, Kuo & Yan, Yuying & Wang, Guohua & Li, Bo, 2021. "Improving transient performance of thermoelectric generator by integrating phase change material," Energy, Elsevier, vol. 219(C).
  40. Zhang, Hanfei & Shin, Donghyun & Santhanagopalan, Sunand, 2019. "Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage," Renewable Energy, Elsevier, vol. 134(C), pages 1156-1162.
  41. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  42. Liu, Lingkun & Alva, Guruprasad & Huang, Xiang & Fang, Guiyin, 2016. "Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 399-414.
  43. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.
  44. Nikpourian, Hediyeh & Bahramian, Ahmad Reza & Abdollahi, Mahdi, 2020. "On the thermal performance of a novel PCM nanocapsule: The effect of core/shell," Renewable Energy, Elsevier, vol. 151(C), pages 322-331.
  45. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
  46. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
  47. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
  48. Yamaç, Halil İbrahim & Koca, Ahmet, 2023. "Performance analysis of triple glazing water flow window systems during winter season," Energy, Elsevier, vol. 282(C).
  49. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
  50. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
  51. Liu, Yushi & Yang, Yingzi, 2018. "Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide," Renewable Energy, Elsevier, vol. 115(C), pages 734-740.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.