IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v43y2015icp281-295.html
   My bibliography  Save this item

Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gu, Jing & Wang, Shuxiao & Lu, Tao & Wu, Yufeng & Yuan, Haoran & Chen, Yong, 2020. "Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene," Renewable Energy, Elsevier, vol. 160(C), pages 964-973.
  2. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
  3. Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
  4. Morgalla, Mario & Lin, Leteng & Strand, Michael, 2017. "Decomposition of benzene using char aerosol particles dispersed in a high-temperature filter," Energy, Elsevier, vol. 118(C), pages 1345-1352.
  5. Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
  6. Cheng, Long & Wu, Zhiqiang & Zhang, Zhiguo & Guo, Changqing & Ellis, Naoko & Bi, Xiaotao & Paul Watkinson, A. & Grace, John R., 2020. "Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char," Applied Energy, Elsevier, vol. 258(C).
  7. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
  8. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
  9. Khushbu Kumari & Raushan Kumar & Nirmali Bordoloi & Tatiana Minkina & Chetan Keswani & Kuldeep Bauddh, 2023. "Unravelling the Recent Developments in the Production Technology and Efficient Applications of Biochar for Agro-Ecosystems," Agriculture, MDPI, vol. 13(3), pages 1-26, February.
  10. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
  11. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
  12. Kejie Wang & Ge Kong & Guanyu Zhang & Xin Zhang & Lujia Han & Xuesong Zhang, 2022. "Steam Gasification of Torrefied/Carbonized Wheat Straw for H 2 -Enriched Syngas Production and Tar Reduction," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
  13. Prasertcharoensuk, Phuet & Bull, Steve J. & Phan, Anh N., 2019. "Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters," Renewable Energy, Elsevier, vol. 143(C), pages 112-120.
  14. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
  15. Peng Du & Yuting Zhang & Xuerui Wang & Stefano Canossa & Zhou Hong & Gwilherm Nénert & Wanqin Jin & Xuehong Gu, 2022. "Control of zeolite framework flexibility for ultra-selective carbon dioxide separation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  16. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).
  17. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
  18. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
  19. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
  20. Shen, Yafei & Zhou, Yuewei & Fu, Yuhong & Zhang, Niyu, 2020. "Activated carbons synthesized from unaltered and pelletized biomass wastes for bio-tar adsorption in different phases," Renewable Energy, Elsevier, vol. 146(C), pages 1700-1709.
  21. Feng, Dongdong & Zhang, Yu & Zhao, Yijun & Sun, Shaozeng, 2018. "Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties," Energy, Elsevier, vol. 152(C), pages 166-177.
  22. Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
  23. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
  24. Shen, Yafei & Wang, Junfeng & Ge, Xinlei & Chen, Mindong, 2016. "By-products recycling for syngas cleanup in biomass pyrolysis – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1246-1268.
  25. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
  26. Wang, Shuxiao & Shan, Rui & Lu, Tao & Zhang, Yuyuan & Yuan, Haoran & Chen, Yong, 2020. "Pyrolysis char derived from waste peat for catalytic reforming of tar model compound," Applied Energy, Elsevier, vol. 263(C).
  27. Guo, Feiqiang & Peng, Kuangye & Liang, Shuang & Jia, Xiaopeng & Jiang, Xiaochen & Qian, Lin, 2019. "One-step synthesis of biomass activated char supported copper nanoparticles for catalytic cracking of biomass primary tar," Energy, Elsevier, vol. 180(C), pages 584-593.
  28. Feng, Dongdong & Shang, Qi & Song, Yidan & Wang, Youxin & Cheng, Zhenyu & Zhao, Yijun & Sun, Shaozeng, 2024. "In-situ catalytic synergistic interaction between self-contained K and added Ni in biomass fast/slow pyrolysis," Renewable Energy, Elsevier, vol. 222(C).
  29. Daorattanachai, Pornlada & Laosiripojana, Weerawan & Laobuthee, Apirat & Laosiripojana, Navadol, 2018. "Type of contribution: Research article catalytic activity of sewage sludge char supported Re-Ni bimetallic catalyst toward cracking/reforming of biomass tar," Renewable Energy, Elsevier, vol. 121(C), pages 644-651.
  30. Zhang, Shuping & Yin, Haoxin & Wang, Jiaxing & Zhu, Shuguang & Xiong, Yuanquan, 2021. "Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts," Energy, Elsevier, vol. 216(C).
  31. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
  32. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  33. David, E. & Kopač, J., 2021. "Efficient removal of tar from gas fraction resulting from thermo-chemical conversion of biomass using coal fly ash–based catalysts," Renewable Energy, Elsevier, vol. 171(C), pages 1290-1302.
  34. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
  35. Mateusz Szul & Tomasz Iluk & Aleksander Sobolewski, 2020. "High-Temperature, Dry Scrubbing of Syngas with Use of Mineral Sorbents and Ceramic Rigid Filters," Energies, MDPI, vol. 13(6), pages 1-22, March.
  36. Chan, Wei Ping & Veksha, Andrei & Lei, Junxi & Oh, Wen-Da & Dou, Xiaomin & Giannis, Apostolos & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "A hot syngas purification system integrated with downdraft gasification of municipal solid waste," Applied Energy, Elsevier, vol. 237(C), pages 227-240.
  37. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
  38. Zeng, Xi & Wang, Fang & Han, Zhennan & Han, Jiangze & Zhang, Jianling & Wu, Rongcheng & Xu, Guangwen, 2019. "Assessment of char property on tar catalytic reforming in a fluidized bed reactor for adopting a two-stage gasification process," Applied Energy, Elsevier, vol. 248(C), pages 115-125.
  39. Zhu, Deao & Wang, Qinhui & Xie, Guilin & Ye, Zefu & Zhu, Zhujun & Ye, Chao, 2024. "Effect of air equivalence ratio on the characteristics of biomass partial gasification for syngas and biochar co-production in the fluidized bed," Renewable Energy, Elsevier, vol. 222(C).
  40. Zhang, Zhanming & Zhang, Lijun & Liu, Fang & Sun, Yifan & Shao, Yuewen & Sun, Kai & Zhang, Shu & Liu, Qing & Hu, Guangzhi & Hu, Xun, 2020. "Tailoring the surface properties of Ni/SiO2 catalyst with sulfuric acid for enhancing the catalytic efficiency for steam reforming of guaiacol," Renewable Energy, Elsevier, vol. 156(C), pages 423-439.
  41. Shen, Yafei & Zhang, Niyu & Zhang, Shu, 2020. "Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons," Energy, Elsevier, vol. 190(C).
  42. Parrillo, F. & Ruoppolo, G. & Arena, U., 2020. "The role of activated carbon size in the catalytic cracking of naphthalene," Energy, Elsevier, vol. 190(C).
  43. Choi, Young-Kon & Ko, Ji-Ho & Kim, Joo-Sik, 2017. "A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and r," Energy, Elsevier, vol. 118(C), pages 139-146.
  44. Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.