Activated carbons synthesized from unaltered and pelletized biomass wastes for bio-tar adsorption in different phases
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.07.167
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
- Yuan, Hongyou & Wu, Shubin & Yin, Xiuli & Huang, Yanqin & Guo, Daliang & Wu, Chuangzhi, 2018. "Adjustment of biomass product gas to raise H2/CO ratio and remove tar over sodium titanate catalysts," Renewable Energy, Elsevier, vol. 115(C), pages 288-298.
- Trubetskaya, Anna & Souihi, Nabil & Umeki, Kentaro, 2019. "Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature," Renewable Energy, Elsevier, vol. 141(C), pages 751-759.
- Veksha, Andrei & Giannis, Apostolos & Yuan, Guoan & Tng, Jiahui & Chan, Wei Ping & Chang, Victor W.-C. & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "Distribution and modeling of tar compounds produced during downdraft gasification of municipal solid waste," Renewable Energy, Elsevier, vol. 136(C), pages 1294-1303.
- Daorattanachai, Pornlada & Laosiripojana, Weerawan & Laobuthee, Apirat & Laosiripojana, Navadol, 2018. "Type of contribution: Research article catalytic activity of sewage sludge char supported Re-Ni bimetallic catalyst toward cracking/reforming of biomass tar," Renewable Energy, Elsevier, vol. 121(C), pages 644-651.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng, Lixiao & Dan, Xie & Cui, Xinyu & Guo, Yang, 2023. "A novel biotar-derived porous carbon supported Ru catalyst for hydrogen production from supercritical water gasification of glycerol," Renewable Energy, Elsevier, vol. 212(C), pages 921-927.
- Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
- Gao, Wenran & Wang, Jinchuan & Akhtar, Asif & Wei, Juntao & Li, Bin & Xu, Deliang & Zhang, Shu & Zhang, Shoujun & Wu, Yinlong, 2023. "Effects of carbonization on the physical properties and combustion behavior of fiberboard sanding dust pellets," Renewable Energy, Elsevier, vol. 212(C), pages 263-273.
- Amar, V.S. & Houck, J.D. & Maddipudi, B. & Penrod, T.A. & Shell, K.M. & Thakkar, A. & Shende, A.R. & Hernandez, S. & Kumar, S. & Gupta, R.B. & Shende, R.V., 2021. "Hydrothermal liquefaction (HTL) processing of unhydrolyzed solids (UHS) for hydrochar and its use for asymmetric supercapacitors with mixed (Mn,Ti)-Perovskite oxides," Renewable Energy, Elsevier, vol. 173(C), pages 329-341.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Čespiva, Jakub & Wnukowski, Mateusz & Niedzwiecki, Lukasz & Skřínský, Jan & Vereš, Ján & Ochodek, Tadeáš & Pawlak-Kruczek, Halina & Borovec, Karel, 2020. "Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime," Renewable Energy, Elsevier, vol. 159(C), pages 775-785.
- Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
- Wang, Shuxiao & Shan, Rui & Lu, Tao & Zhang, Yuyuan & Yuan, Haoran & Chen, Yong, 2020. "Pyrolysis char derived from waste peat for catalytic reforming of tar model compound," Applied Energy, Elsevier, vol. 263(C).
- Gu, Jing & Wang, Shuxiao & Lu, Tao & Wu, Yufeng & Yuan, Haoran & Chen, Yong, 2020. "Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene," Renewable Energy, Elsevier, vol. 160(C), pages 964-973.
- Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
- Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
- Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
- Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
- Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
- Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
- Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
- Surup, Gerrit Ralf & Hunt, Andrew J. & Attard, Thomas & Budarin, Vitaliy L. & Forsberg, Fredrik & Arshadi, Mehrdad & Abdelsayed, Victor & Shekhawat, Dushyant & Trubetskaya, Anna, 2020. "The effect of wood composition and supercritical CO2 extraction on charcoal production in ferroalloy industries," Energy, Elsevier, vol. 193(C).
- Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
- Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
- Feng, Dongdong & Zhang, Yu & Zhao, Yijun & Sun, Shaozeng, 2018. "Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties," Energy, Elsevier, vol. 152(C), pages 166-177.
- Chen, Tao & Sjöblom, Jonas & Ström, Henrik, 2022. "Numerical investigations of soot generation during wood-log combustion," Applied Energy, Elsevier, vol. 325(C).
- Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.
- Li, Longzhi & Meng, Bo & Qin, Xiaomin & Yang, Zhijuan & Chen, Jian & Yan, Keshuo & Wang, Fumao, 2020. "Toluene microwave cracking and reforming over bio-char with in-situ activation and ex-situ impregnation of metal," Renewable Energy, Elsevier, vol. 149(C), pages 1205-1213.
More about this item
Keywords
Rice husk; KOH activation; Hierarchical porous carbon; Bio-tar; Phenol sorption;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1700-1709. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.