IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v217y2018icp249-257.html
   My bibliography  Save this article

Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research

Author

Listed:
  • Chen, Guanyi
  • Li, Jian
  • Cheng, Zhanjun
  • Yan, Beibei
  • Ma, Wenchao
  • Yao, Jingang

Abstract

Tar is a major concern for advancing biomass gasification in industrial application due to its risk to downstream pipes/equipment and tar-contaminated environmental issue. Meanwhile, tar also leads to energy loss. Thermal cracking with or without catalyst is a widely used method for removing tar during biomass gasification. Microwave thermal cracking is a lately developed method of removing tar and only a few literatures are available on its reaction parameters and catalytic effect. A microwave tube furnace was designed for investigating tar cracking in our lab. Toluene as biomass tar model compound was cracked under various operating conditions assisted by three different bed materials (SiC, biochar, and biochar-Ni). The results showed that microwave heating is effective for toluene cracking, and biochar can act as a bi-functional catalyst for toluene cracking. Toluene cracking rate reached 95.12% under reaction temperature of 800 °C, catalyst particle size of 40–60 meshes and Ni loading of 4 wt%. Hydrogen concentration was higher than 92 vol%. The mechanism of toluene cracking, effect of microwave and efficiency of energy conversion were also carefully discussed, and the applied potential of microwave tar cracking technology was proved.

Suggested Citation

  • Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
  • Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:249-257
    DOI: 10.1016/j.apenergy.2018.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918301533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    2. Muley, P.D. & Henkel, C.E. & Aguilar, G. & Klasson, K.T. & Boldor, D., 2016. "Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor," Applied Energy, Elsevier, vol. 183(C), pages 995-1004.
    3. Shen, Yafei, 2015. "Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 281-295.
    4. Sun, Jing & Wang, Wenlong & Yue, Qinyan & Ma, Chunyuan & Zhang, Junsong & Zhao, Xiqiang & Song, Zhanlong, 2016. "Review on microwave–metal discharges and their applications in energy and industrial processes," Applied Energy, Elsevier, vol. 175(C), pages 141-157.
    5. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    6. Shen, Yafei & Yoshikawa, Kunio, 2013. "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 371-392.
    7. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    8. Zhou, Yuli & Wang, Wenlong & Sun, Jing & Fu, Lunjing & Song, Zhanlong & Zhao, Xiqiang & Mao, Yanpeng, 2017. "Microwave-induced electrical discharge of metal strips for the degradation of biomass tar," Energy, Elsevier, vol. 126(C), pages 42-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Yuechi & Jia, Xiaopeng & Hu, Yongjie & Li, Jian & Wang, Zhi & Yan, Beibei & Chen, Guanyi, 2024. "Microwave driven steam reforming of biomass model tar based on metal organic frameworks (ZIF-67) derived Co/C catalyst," Energy, Elsevier, vol. 304(C).
    2. Liu, Yang & Ao, Wenya & Fu, Jie & Siyal, Asif Ali & An, Qing & Zhou, Chunbao & Liu, Chenglong & Zhang, Yingwen & Chen, Zhiwen & Yun, Huimin & Dai, Jianjun & Bi, Xiaotao, 2024. "Microwave-assisted pyrolysis of industrial biomass waste: Insights into kinetic, characteristics and intrinsic mechanisms," Energy, Elsevier, vol. 306(C).
    3. Kejie Wang & Ge Kong & Guanyu Zhang & Xin Zhang & Lujia Han & Xuesong Zhang, 2022. "Steam Gasification of Torrefied/Carbonized Wheat Straw for H 2 -Enriched Syngas Production and Tar Reduction," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    4. Wang, Shuxiao & Zhang, Yuyuan & Shan, Rui & Gu, Jing & Yuan, Haoran & Chen, Yong, 2022. "Steam reforming of biomass tar model compound over two waste char-based Ni catalysts for syngas production," Energy, Elsevier, vol. 246(C).
    5. Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
    6. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    7. Cheng Yang & Kanfeng Ying & Fan Yang & Huanghu Peng & Zezhou Chen, 2022. "Simulation on the Electric and Thermal Fields of a Microwave Reactor for Ex Situ Biomass Tar Elimination," Energies, MDPI, vol. 15(11), pages 1-12, June.
    8. Lian, Ming-lei & Li, Shuai & Wu, Wen-fang & Li, Lin & Miao, Ying-ju & Ge, Yuan, 2023. "Graphite-assisted microwave carbon dioxide gasification of wet stalks," Renewable Energy, Elsevier, vol. 219(P1).
    9. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Li, Longzhi & Meng, Bo & Qin, Xiaomin & Yang, Zhijuan & Chen, Jian & Yan, Keshuo & Wang, Fumao, 2020. "Toluene microwave cracking and reforming over bio-char with in-situ activation and ex-situ impregnation of metal," Renewable Energy, Elsevier, vol. 149(C), pages 1205-1213.
    11. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    12. Li, Longzhi & Yang, Zhijuan & Qin, Xiaomin & Chen, Jian & Yan, Keshuo & Zou, Guifu & Peng, Zhuoyan & Wang, Fumao & Song, Zhanlong & Ma, Chunyuan, 2019. "Toluene microwave-assisted reforming with CO2 or a mixed agent of CO2-H2O on Fe-doped activated biochar," Energy, Elsevier, vol. 177(C), pages 358-366.
    13. Zhang, Xiaosong & Pan, Jiawei & Wang, Liang & Qian, Tianle & Zhu, Yuezhao & Sun, Hongqi & Gao, Jian & Chen, Haijun & Gao, Ying & Liu, Chang, 2019. "COSMO-based solvent selection and Aspen Plus process simulation for tar absorptive removal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Fan, Liangliang & Liu, Lei & Xiao, Zhiguo & Su, Zheyang & Huang, Pei & Peng, Hongyu & Lv, Sen & Jiang, Haiwei & Ruan, Roger & Chen, Paul & Zhou, Wenguang, 2021. "Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5," Energy, Elsevier, vol. 228(C).
    16. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    17. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    3. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
    4. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    5. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    7. Qian, Lin & Zhao, Nanjin & Guo, Feiqiang & Kong, Lingwei & Wang, Jiajun & Tang, Biao & Kuang, Panyang & Sun, Hui, 2024. "Tar microwave reforming over different biochar-based Ni catalysts by experiments and DFT," Energy, Elsevier, vol. 304(C).
    8. Sun, Jing & Wang, Qing & Wang, Wenlong & Wang, Ke, 2018. "Study on the synergism of steam reforming and photocatalysis for the degradation of Toluene as a tar model compound under microwave-metal discharges," Energy, Elsevier, vol. 155(C), pages 815-823.
    9. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    10. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    11. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    12. Zhang, Lianjie & Tan, Yongdong & Cai, Dongqiang & Sun, Jifu & Zhang, Yue & Li, Longzhi & Zhang, Qiang & Zou, Guifu & Song, Zhanlong & Bai, Yonghui, 2022. "Enhanced pyrolysis of woody biomass under interaction of microwave and needle-shape metal and its production properties," Energy, Elsevier, vol. 249(C).
    13. Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
    14. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    15. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    16. Li, Jian & Tao, Junyu & Yan, Beibei & Cheng, Kexin & Chen, Guanyi & Hu, Jianli, 2020. "Microwave reforming with char-supported Nickel-Cerium catalysts: A potential approach for thorough conversion of biomass tar model compound," Applied Energy, Elsevier, vol. 261(C).
    17. Kobori, Takahiro & Yoshikawa, Kunio & Ismail, Tamer M. & Yasser, T.M. & García, Abraham Castro & Kanazawa, Kiryu & Takahashi, Fumitake, 2022. "Effect of electron injection on oxidative pyrolysis of cellulose and polypropylene," Applied Energy, Elsevier, vol. 326(C).
    18. Prasertcharoensuk, Phuet & Bull, Steve J. & Phan, Anh N., 2019. "Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters," Renewable Energy, Elsevier, vol. 143(C), pages 112-120.
    19. Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
    20. Luo, Juan & Ma, Rui & Huang, Xiaofei & Sun, Shichang & Wang, Hao, 2020. "Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:249-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.