IDEAS home Printed from https://ideas.repec.org/r/eee/reensy/v133y2015icp223-236.html
   My bibliography  Save this item

Practical options for selecting data-driven or physics-based prognostics algorithms with reviews

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lin, Chun-Pang & Cabrera, Javier & Yang, Fangfang & Ling, Man-Ho & Tsui, Kwok-Leung & Bae, Suk-Joo, 2020. "Battery state of health modeling and remaining useful life prediction through time series model," Applied Energy, Elsevier, vol. 275(C).
  2. Wang, Yiwei & Gogu, Christian & Kim, Nam H. & Haftka, Raphael T. & Binaud, Nicolas & Bes, Christian, 2019. "Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 86-100.
  3. Chen, Jian & Yuan, Shenfang & Sbarufatti, Claudio & Jin, Xin, 2021. "Dual crack growth prognosis by using a mixture proposal particle filter and on-line crack monitoring," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  4. Duan, Chaoqun & Li, Yifan & Pu, Huayan & Luo, Jun, 2022. "Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  5. Kyoungcheol Oh & Eui-Jong Kim & Chang-Young Park, 2022. "A Physical Model-Based Data-Driven Approach to Overcome Data Scarcity and Predict Building Energy Consumption," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
  6. Mishra, Madhav & Martinsson, Jesper & Rantatalo, Matti & Goebel, Kai, 2018. "Bayesian hierarchical model-based prognostics for lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 25-35.
  7. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  8. Ahmed Elsheikh & Soumaya Yacout & Mohamed-Salah Ouali & Yasser Shaban, 2020. "Failure time prediction using adaptive logical analysis of survival curves and multiple machining signals," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 403-415, February.
  9. Zang, Yu & Shangguan, Wei & Cai, Baigen & Wang, Huasheng & Pecht, Michael. G., 2021. "Hybrid remaining useful life prediction method. A case study on railway D-cables," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  10. Vega, Manuel A. & Hu, Zhen & Todd, Michael D., 2020. "Optimal maintenance decisions for deteriorating quoin blocks in miter gates subject to uncertainty in the condition rating protocol," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  11. Roy Assaf & Phuc Do & Samia Nefti-Meziani & Philip Scarf, 2018. "Wear rate–state interactions within a multi-component system: a study of a gearbox-accelerated life testing platform," Journal of Risk and Reliability, , vol. 232(4), pages 425-434, August.
  12. Kamran Javed & Rafael Gouriveau & Xiang Li & Noureddine Zerhouni, 2018. "Tool wear monitoring and prognostics challenges: a comparison of connectionist methods toward an adaptive ensemble model," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1873-1890, December.
  13. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
  14. Chiachío, Juan & Chiachío, Manuel & Prescott, Darren & Andrews, John, 2019. "A knowledge-based prognostics framework for railway track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 127-141.
  15. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
  16. Chiachío, Manuel & Chiachío, Juan & Sankararaman, Shankar & Goebel, Kai & Andrews, John, 2017. "A new algorithm for prognostics using Subset Simulation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 189-199.
  17. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  18. Bian, Chong & Yang, Shunkun & Huang, Tingting & Xu, Qingyang & Liu, Jie & Zio, Enrico, 2019. "Degradation state mining and identification for railway point machines," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 432-443.
  19. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
  20. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
  21. Moradi, Ramin & Groth, Katrina M., 2020. "Modernizing risk assessment: A systematic integration of PRA and PHM techniques," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  22. Jaehyeok Doh, 2023. "Bayesian inference-based prognosis of fatigue damage for MPPO polymer using Zhurkov fatigue life model," Journal of Risk and Reliability, , vol. 237(4), pages 636-653, August.
  23. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
  24. Dourado, Arinan & Viana, Felipe A.C., 2021. "Early life failures and services of industrial asset fleets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  25. Prakash, Om & Samantaray, Arun Kumar, 2021. "Prognosis of Dynamical System Components with Varying Degradation Patterns using model–data–fusion," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  26. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  27. Leite, Gustavo de Novaes Pires & Araújo, Alex Maurício & Rosas, Pedro André Carvalho, 2018. "Prognostic techniques applied to maintenance of wind turbines: a concise and specific review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1917-1925.
  28. Taichun Qin & Shengkui Zeng & Jianbin Guo & Zakwan Skaf, 2016. "A Rest Time-Based Prognostic Framework for State of Health Estimation of Lithium-Ion Batteries with Regeneration Phenomena," Energies, MDPI, vol. 9(11), pages 1-18, November.
  29. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
  30. Heidary, Roohollah & Groth, Katrina M., 2021. "A hybrid population-based degradation model for pipeline pitting corrosion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  31. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
  32. Saari, Juhamatti & Odelius, Johan, 2018. "Detecting operation regimes using unsupervised clustering with infected group labelling to improve machine diagnostics and prognostics," Operations Research Perspectives, Elsevier, vol. 5(C), pages 232-244.
  33. Liu, Yingchao & Hu, Xiaofeng & Zhang, Wenjuan, 2019. "Remaining useful life prediction based on health index similarity," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 502-510.
  34. Feng, Qiang & Bi, Xiong & Zhao, Xiujie & Chen, Yiran & Sun, Bo, 2017. "Heuristic hybrid game approach for fleet condition-based maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 166-176.
  35. Rivas, Andy & Delipei, Gregory Kyriakos & Davis, Ian & Bhongale, Satyan & Yang, Jinan & Hou, Jason, 2024. "A component diagnostic and prognostic framework for pump bearings based on deep learning with data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  36. Zhao, Zeqi & Bin Liang, & Wang, Xueqian & Lu, Weining, 2017. "Remaining useful life prediction of aircraft engine based on degradation pattern learning," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 74-83.
  37. Jiang, Chen & Vega, Manuel A. & Todd, Michael D. & Hu, Zhen, 2022. "Model correction and updating of a stochastic degradation model for failure prognostics of miter gates," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
  38. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
  39. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
  40. Antonio Gálvez & Alberto Diez-Olivan & Dammika Seneviratne & Diego Galar, 2021. "Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.