IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024001959.html
   My bibliography  Save this article

A component diagnostic and prognostic framework for pump bearings based on deep learning with data augmentation

Author

Listed:
  • Rivas, Andy
  • Delipei, Gregory Kyriakos
  • Davis, Ian
  • Bhongale, Satyan
  • Yang, Jinan
  • Hou, Jason

Abstract

To support the mission of providing safe electricity generation with a high capacity factor, a Predictive Maintenance (PdM) framework using Machine Learning Models (MLM) to optimize component maintenance operations is developed. Using sensor measurements to better predict the true component’s Remaining Useful Life (RUL), the PdM framework has the potential to optimize maintenance costs by performing maintenance only when necessary. The PdM framework to pump bearings, the framework consists of a Convolutional Neural Network Autoencoder (CNN-AE) to detect component deviations from normality, a CNN to characterize component fault modes, and a Bayesian Neural Network (BNN) to estimate the component RUL with uncertainty. To increase the number of training samples, a synthetic data generation procedure was developed and includes procedures to recreate the fault-specific characteristic frequencies for diagnostics and the degradation trends for prognostics. The MLMs trained on the synthetic data are tested on the Center for Intelligent Maintenance Systems (IMS) dataset to showcase how well the synthetic data replicates measurement data. Utilizing this framework, the PdM was found to delay maintenance on average by a total of 8.92 years over 40 years and decrease the unexpected component failure rate from 10% to 0% when compared to traditional maintenance philosophies.

Suggested Citation

  • Rivas, Andy & Delipei, Gregory Kyriakos & Davis, Ian & Bhongale, Satyan & Yang, Jinan & Hou, Jason, 2024. "A component diagnostic and prognostic framework for pump bearings based on deep learning with data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001959
    DOI: 10.1016/j.ress.2024.110121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    2. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    5. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Jeong, Haedong & Park, Bumsoo & Park, Seungtae & Min, Hyungcheol & Lee, Seungchul, 2019. "Fault detection and identification method using observer-based residuals," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 27-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Dually attentive multiscale networks for health state recognition of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Gjorgiev, Blazhe & Das, Laya & Merkel, Seline & Rohrer, Martina & Auger, Etienne & Sansavini, Giovanni, 2023. "Simulation-driven deep learning for locating faulty insulators in a power line," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Dourado, Arinan & Viana, Felipe A.C., 2021. "Early life failures and services of industrial asset fleets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Yan, Shen & Shao, Haidong & Min, Zhishan & Peng, Jiangji & Cai, Baoping & Liu, Bin, 2023. "FGDAE: A new machinery anomaly detection method towards complex operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    18. Cao, Yudong & Jia, Minping & Zhao, Xiaoli & Yan, Xiaoan & Feng, Ke, 2024. "Complex augmented representation network for transferable health prognosis of rolling bearing considering dynamic covariate shift," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. de Pater, Ingeborg & Reijns, Arthur & Mitici, Mihaela, 2022. "Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.