IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v232y2018i4p425-434.html
   My bibliography  Save this article

Wear rate–state interactions within a multi-component system: a study of a gearbox-accelerated life testing platform

Author

Listed:
  • Roy Assaf
  • Phuc Do
  • Samia Nefti-Meziani
  • Philip Scarf

Abstract

The degradation process of complex multi-component systems is highly stochastic in nature. A major side effect of this complexity is that components of such systems may have unexpected reduced life and faults and failures that decrease the reliability of multi-component systems in industrial environments. In this work, we provide maintenance practitioners with an explanation of the nature of some of these unpredictable events, namely, the degradation interactions that take place between components. We begin by presenting a general wear model where the degradation process of a component may be dependent on the operating conditions, the component’s own state and the state of the other components. We then present our methodology for extracting accurate health indicators from multi-component systems by means of a time–frequency domain analysis. Finally, we present a multi-component system degradation analysis of experimental data generated by a gearbox-accelerated life testing platform. In doing so, we demonstrate the importance of modelling the interactions between the system components by showing their effect on component lifetime reduction.

Suggested Citation

  • Roy Assaf & Phuc Do & Samia Nefti-Meziani & Philip Scarf, 2018. "Wear rate–state interactions within a multi-component system: a study of a gearbox-accelerated life testing platform," Journal of Risk and Reliability, , vol. 232(4), pages 425-434, August.
  • Handle: RePEc:sae:risrel:v:232:y:2018:i:4:p:425-434
    DOI: 10.1177/1748006X18764061
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18764061
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18764061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    2. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    3. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    4. Ariane Lorton & Mitra Fouladirad & Antoine Grall, 2013. "A methodology for probabilistic model-based prognosis," Post-Print hal-02284358, HAL.
    5. Linkan Bian & Nagi Gebraeel, 2014. "Stochastic framework for partially degradation systems with continuous component degradation‐rate‐interactions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(4), pages 286-303, June.
    6. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    7. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    8. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    9. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    10. Xiao Liu & Jingrui Li & Khalifa Al-Khalifa & Abdelmagid Hamouda & David Coit & Elsayed Elsayed, 2013. "Condition-based maintenance for continuously monitored degrading systems with multiple failure modes," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 422-435.
    11. Lorton, A. & Fouladirad, M. & Grall, A., 2013. "A methodology for probabilistic model-based prognosis," European Journal of Operational Research, Elsevier, vol. 225(3), pages 443-454.
    12. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    13. Bouvard, K. & Artus, S. & Bérenguer, C. & Cocquempot, V., 2011. "Condition-based dynamic maintenance operations planning & grouping. Application to commercial heavy vehicles," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 601-610.
    14. Rasmekomen, Nipat & Parlikad, Ajith Kumar, 2016. "Condition-based maintenance of multi-component systems with degradation state-rate interactions," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 1-10.
    15. Deloux, E. & Castanier, B. & Bérenguer, C., 2009. "Predictive maintenance policy for a gradually deteriorating system subject to stress," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 418-431.
    16. Li Hao & Nagi Gebraeel & Jianjun Shi, 2015. "Simultaneous signal separation and prognostics of multi-component systems: the case of identical components," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 487-504, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    2. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    3. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    4. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    5. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    6. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    7. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    8. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    9. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.
    10. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    11. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    12. Zhang, Nan & Fouladirad, Mitra & Barros, Anne & Zhang, Jun, 2020. "Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 159-167.
    13. Huynh, K.T. & Grall, A. & Bérenguer, C., 2017. "Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 237-254.
    14. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2017. "Joint condition-based maintenance and inventory optimization for systems with multiple components," European Journal of Operational Research, Elsevier, vol. 257(1), pages 209-222.
    15. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    16. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    18. Finkelstein, Maxim & Cha, Ji Hwan & Langston, Amy, 2023. "Improving classical optimal age-replacement policies for degrading items," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:232:y:2018:i:4:p:425-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.