IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005878.html
   My bibliography  Save this article

Physics-based digital twin updating and twin-based explainable crack identification of mechanical lap joint

Author

Listed:
  • Kim, Wongon
  • Youn, Byeng D.

Abstract

The mechanical joints, including the lap joint, weld, bolt, and pin, are vulnerable to fatigue failure because of stress concentration and internal flaws. Digital twin (DTw) strategies were proposed to prevent catastrophic system failure by fatigue damage in mechanical joints. In previous studies, the data-driven approach, such as deep learning and machine learning were utilized to estimate severity of the damage. However, it needs to improve its prediction accuracy because of insufficient data and physical interpretability. In this study, the physics-based digital twin model updating and twin-based crack identification of fatigue damage in riveted lap joints were proposed using lamb waves with consideration of uncertain crack growth path. The proposed approach is based on three techniques; (i) Data pre-processing, including filtering and optimization-based signal synchronization, (ii) Lamb-wave propagation analysis with sensor dynamics model and uncertain crack path, and (iii) Optimization based physics-based model updating and inference. In data pre-processing, the excitation frequency magnitude and truncation time are estimated using the observed actuator signal in the Lamb-wave test. The sensor dynamic model and model parameters are updated using the Bayesian optimization method to minimize both the errors in the predicted (y^t) and observed (yt) wave signal and the errors in the inferred (l*) and observed (l) crack length. The crack growth path is sampled based on angular and spline schemes to consider uncertain crack propagation paths. The validity of the proposed method is demonstrated using an open data set (2019 PHM society data challenge). The results conclude that the proposed digital twin approach can improve estimation accuracy considering both the crack growth path and sensor dynamics model.

Suggested Citation

  • Kim, Wongon & Youn, Byeng D., 2025. "Physics-based digital twin updating and twin-based explainable crack identification of mechanical lap joint," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005878
    DOI: 10.1016/j.ress.2024.110515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.