My bibliography
Save this item
On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ledoit, Olivier & Wolf, Michael, 2017.
"Numerical implementation of the QuEST function,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
- Olivier Ledoit & Michael Wolf, 2016. "Numerical implementation of the QuEST function," ECON - Working Papers 215, Department of Economics - University of Zurich, revised Jan 2017.
- Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018.
"Estimation of the global minimum variance portfolio in high dimensions,"
European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
- Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
- Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
- Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.
- G. L. Zitelli, 2022. "Amalgamated Free Lévy Processes as Limits of Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2176-2193, December.
- Dozier, R. Brent & Silverstein, Jack W., 2007. "Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1099-1122, July.
- Jin, Baisuo & Wang, Cheng & Miao, Baiqi & Lo Huang, Mong-Na, 2009. "Limiting spectral distribution of large-dimensional sample covariance matrices generated by VARMA," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2112-2125, October.
- Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
- Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
- Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
- Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Mar 2017.
- Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019.
"Large Dynamic Covariance Matrices,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
- Li, Hua & Bai, Zhi Dong & Wong, Wing Keung, 2015. "High dimensional Global Minimum Variance Portfolio," MPRA Paper 66284, University Library of Munich, Germany.
- Svensson, Jens, 2007. "The asymptotic spectrum of the EWMA covariance estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 621-630.
- Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
- Rubio, Francisco & Mestre, Xavier, 2011. "Spectral convergence for a general class of random matrices," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 592-602, May.
- Junshan Xie, 2013. "Limiting spectral distribution for a type of sample covariance matrices," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(5), pages 695-710, October.
- He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
- Marwa Banna & Florence Merlevède, 2015. "Limiting Spectral Distribution of Large Sample Covariance Matrices Associated with a Class of Stationary Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 745-783, June.
- Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
- Guhlich, Matthias & Nagel, Jan & Dette, Holger, 2010. "Random block matrices generalizing the classical Jacobi and Laguerre ensembles," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1884-1897, September.
- Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
- M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.
- Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
- Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014.
"On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix,"
Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
- Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "On the Strong Convergence of the Optimal Linear Shrinkage Estimator for Large Dimensional Covariance Matrix," Papers 1308.2608, arXiv.org, revised Jun 2014.
- Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
- Ledoit, Olivier & Wolf, Michael, 2015.
"Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
- Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
- Bai, Zhidong & Wang, Chen, 2015. "A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 333-340.
- Xie, Junshan & Zeng, Yicheng & Zhu, Lixing, 2021. "Limiting laws for extreme eigenvalues of large-dimensional spiked Fisher matrices with a divergent number of spikes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Claudio Heinrich & Mark Podolskij, 2014. "On spectral distribution of high dimensional covariation matrices," CREATES Research Papers 2014-54, Department of Economics and Business Economics, Aarhus University.
- Pan, Guangming & Miao, Boqi & Jin, Baisuo, 2005. "Some limiting theorems of some random quadratic forms," Statistics & Probability Letters, Elsevier, vol. 75(3), pages 151-157, December.
- Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
- Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005.
"Large dimension forecasting models and random singular value spectra,"
Papers
physics/0512090, arXiv.org.
- Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005. "Large dimension forecasting models and random singular value spectra," Science & Finance (CFM) working paper archive 500066, Science & Finance, Capital Fund Management.
- Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022.
"Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization,"
Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization," Documentos de Trabajo del ICAE 2017-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Tinbergen Institute Discussion Papers 16-025/III, Tinbergen Institute.
- Bai, Z. & Li, H. & McAleer, M.J. & Wong, W.-K., 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometric Institute Research Papers EI2016-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
- Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
- Zhang, Yangchun & Hu, Jiang & Li, Weiming, 2022. "CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Péché, S., 2006. "Non-white Wishart ensembles," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 874-894, April.
- Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
- Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
- Han Xiao & Wang Zhou, 2010. "Almost Sure Limit of the Smallest Eigenvalue of Some Sample Correlation Matrices," Journal of Theoretical Probability, Springer, vol. 23(1), pages 1-20, March.
- Dozier, R. Brent & Silverstein, Jack W., 2007. "On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 678-694, April.
- Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Weiming Li, 2014. "Local expectations of the population spectral distribution of a high-dimensional covariance matrix," Statistical Papers, Springer, vol. 55(2), pages 563-573, May.
- Jerzy Rydlewski & Małgorzata Snarska & Dominik Mielczarek & Daniel Kosiorowski, 2014. "Sparse Methods for Analysis of Sparse Multivariate Data From Big Economic Databases," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(1), pages 111-132, January.
- Tingting Zou & Shurong Zheng & Zhidong Bai & Jianfeng Yao & Hongtu Zhu, 2022. "CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data," Statistical Papers, Springer, vol. 63(2), pages 605-664, April.
- Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
- Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
- Couillet, Romain & Tiomoko, Malik & Zozor, Steeve & Moisan, Eric, 2019. "Random matrix-improved estimation of covariance matrix distances," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
- Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
- Couillet, Romain & Pascal, Frédéric & Silverstein, Jack W., 2015. "The random matrix regime of Maronna’s M-estimator with elliptically distributed samples," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 56-78.
- Xinghua Zheng & Yingying Li, 2010. "On the estimation of integrated covariance matrices of high dimensional diffusion processes," Papers 1005.1862, arXiv.org, revised Mar 2012.
- Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
- Weiming Li & Jianfeng Yao, 2015. "On generalized expectation-based estimation of a population spectral distribution from high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 359-373, April.
- Ningning Xia & Zhidong Bai, 2019. "Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices," Statistical Papers, Springer, vol. 60(3), pages 983-1015, June.
- Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
- Mo, M.Y., 2010. "Universality in complex Wishart ensembles for general covariance matrices with 2 distinct eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1203-1225, May.
- Bai, Z.D. & Zhang, L.X., 2010. "The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1927-1949, October.
- Wang, Lili & Paul, Debashis, 2014. "Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→0," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 25-52.
- Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
- Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.