IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v191y2022ics0047259x22000379.html
   My bibliography  Save this article

CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions

Author

Listed:
  • Zhang, Yangchun
  • Hu, Jiang
  • Li, Weiming

Abstract

In this paper, we establish a new central limit theorem for the linear spectral statistics of high-dimensional sample covariance matrices. The underlying population belongs to the family of elliptical distributions, and the dimension of the population is allowed to grow to infinity, in proportion to the sample size. As an application, we construct confidence intervals for the model parameters of a Gaussian scale mixture.

Suggested Citation

  • Zhang, Yangchun & Hu, Jiang & Li, Weiming, 2022. "CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000379
    DOI: 10.1016/j.jmva.2022.105007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    2. Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
    3. Schott, James R., 2007. "A test for the equality of covariance matrices when the dimension is large relative to the sample sizes," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6535-6542, August.
    4. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    5. Weiming Li & Jianfeng Yao, 2018. "On structure testing for component covariance matrices of a high dimensional mixture," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 293-318, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yangchun & Zhou, Yirui & Liu, Xiaowei, 2023. "Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Weiming & Qin, Yingli, 2014. "Hypothesis testing for high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 108-119.
    2. Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
    3. Zhang, Yangchun & Zhou, Yirui & Liu, Xiaowei, 2023. "Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
    5. Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
    6. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    7. Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
    8. Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
    9. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    10. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    11. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    12. Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005. "Large dimension forecasting models and random singular value spectra," Science & Finance (CFM) working paper archive 500066, Science & Finance, Capital Fund Management.
    13. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
    14. Péché, S., 2006. "Non-white Wishart ensembles," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 874-894, April.
    15. Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
    16. Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
    17. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    18. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
    19. Jerzy Rydlewski & Małgorzata Snarska & Dominik Mielczarek & Daniel Kosiorowski, 2014. "Sparse Methods for Analysis of Sparse Multivariate Data From Big Economic Databases," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(1), pages 111-132, January.
    20. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:191:y:2022:i:c:s0047259x22000379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.