IDEAS home Printed from https://ideas.repec.org/p/zur/econwp/264.html
   My bibliography  Save this paper

Analytical nonlinear shrinkage of large-dimensional covariance matrices

Author

Listed:
  • Olivier Ledoit
  • Michael Wolf

Abstract

This paper establishes the first analytical formula for optimal nonlinear shrinkage of large-dimensional covariance matrices. We achieve this by identifying and mathematically exploiting a deep connection between nonlinear shrinkage and nonparametric estimation of the Hilbert transform of the sample spectral density. Previous nonlinear shrinkage methods were numerical: QuEST requires numerical inversion of a complex equation from random matrix theory whereas NERCOME is based on a sample-splitting scheme. The new analytical approach is more elegant and also has more potential to accommodate future variations or extensions. Immediate benefits are that it is typically 1,000 times faster with the same accuracy, and accommodates covariance matrices of dimension up to 10, 000. The difficult case where the matrix dimension exceeds the sample size is also covered.

Suggested Citation

  • Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
  • Handle: RePEc:zur:econwp:264
    as

    Download full text from publisher

    File URL: https://www.zora.uzh.ch/id/eprint/139880/6/econwp264.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Bala Rajaratnam & Dario Vincenzi, 2016. "A theoretical study of Stein's covariance estimator," Biometrika, Biometrika Trust, vol. 103(3), pages 653-666.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    5. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    6. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    7. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    8. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    9. Abadir, Karim M. & Distaso, Walter & Žikeš, Filip, 2014. "Design-free estimation of variance matrices," Journal of Econometrics, Elsevier, vol. 181(2), pages 165-180.
    10. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    2. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    3. Olivier Ledoit & Michael Wolf, 2019. "Shrinkage estimation of large covariance matrices: keep it simple, statistician?," ECON - Working Papers 327, Department of Economics - University of Zurich, revised Jun 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.
    2. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    3. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    4. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    5. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    7. Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Mar 2017.
    8. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).
    9. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
    11. Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
    12. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    13. Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
    14. Yuasa, Ryota & Kubokawa, Tatsuya, 2020. "Ridge-type linear shrinkage estimation of the mean matrix of a high-dimensional normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    15. Olivier Ledoit & Michael Wolf, 2019. "Shrinkage estimation of large covariance matrices: keep it simple, statistician?," ECON - Working Papers 327, Department of Economics - University of Zurich, revised Jun 2021.
    16. Vincent Tan & Stefan Zohren, 2020. "Estimation of Large Financial Covariances: A Cross-Validation Approach," Papers 2012.05757, arXiv.org, revised Jan 2023.
    17. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    18. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    19. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    20. Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.

    More about this item

    Keywords

    Kernel estimation; Hilbert transform; large-dimensional asymptotics; nonlinear shrinkage; rotation equivariance;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:econwp:264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Severin Oswald (email available below). General contact details of provider: https://edirc.repec.org/data/seizhch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.