IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v197y2023ics0167715223000354.html
   My bibliography  Save this article

The eigenvector LSD of information plus noise matrices and its application to linear regression model

Author

Listed:
  • Li, Yuling
  • Zhou, Huanchao
  • Hu, Jiang

Abstract

In this paper, we investigate the limit of the eigenvector empirical spectral distribution (VESD) of large dimensional information plus noise matrices Cn=1nTn1/2(Xn+Rn)(Xn+Rn)′Tn1/2, where Xn are p×n random matrices with independent and identically distributed entries, Tn and Rn are non-random matrices. It is shown that as p/n→c∈(0,∞), the VESD of Cn has a deterministic limit under some mild conditions. The theoretical result is applied to the model selection problems in high dimensional linear regression model.

Suggested Citation

  • Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:stapro:v:197:y:2023:i:c:s0167715223000354
    DOI: 10.1016/j.spl.2023.109811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223000354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dozier, R. Brent & Silverstein, Jack W., 2007. "Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1099-1122, July.
    2. Dozier, R. Brent & Silverstein, Jack W., 2007. "On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 678-694, April.
    3. Silverstein, Jack W., 1989. "On the eigenvectors of large dimensional sample covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 30(1), pages 1-16, July.
    4. Bai, Z. D. & Silverstein, Jack W. & Yin, Y. Q., 1988. "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 166-168, August.
    5. Silverstein, Jack W., 1984. "Some limit theorems on the eigenvectors of large dimensional sample covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 15(3), pages 295-324, December.
    6. Ningning Xia & Zhidong Bai, 2019. "Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices," Statistical Papers, Springer, vol. 60(3), pages 983-1015, June.
    7. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    8. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    9. Silverstein, Jack W., 1989. "On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 307-311, August.
    10. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    2. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    3. Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
    4. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Ningning Xia & Zhidong Bai, 2019. "Convergence rate of eigenvector empirical spectral distribution of large Wigner matrices," Statistical Papers, Springer, vol. 60(3), pages 983-1015, June.
    6. Bai, Zhidong & Wang, Chen, 2015. "A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 333-340.
    7. Joel Bun & Jean-Philippe Bouchaud & Marc Potters, 2016. "Cleaning large correlation matrices: tools from random matrix theory," Papers 1610.08104, arXiv.org.
    8. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    9. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    10. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 49/13, Institute for Fiscal Studies.
    11. Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
    12. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    13. Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
    14. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 63/13, Institute for Fiscal Studies.
    15. Tingting Zou & Shurong Zheng & Zhidong Bai & Jianfeng Yao & Hongtu Zhu, 2022. "CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data," Statistical Papers, Springer, vol. 63(2), pages 605-664, April.
    16. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
    17. Xu, Yangchang & Xia, Ningning, 2023. "On the eigenvectors of large-dimensional sample spatial sign covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    18. Iv'an Fern'andez-Val & Hugo Freeman & Martin Weidner, 2020. "Low-Rank Approximations of Nonseparable Panel Models," Papers 2010.12439, arXiv.org, revised Mar 2021.
    19. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
    20. M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:197:y:2023:i:c:s0167715223000354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.