Random block matrices generalizing the classical Jacobi and Laguerre ensembles
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
- Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
- Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
- Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
- Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
- Pavel Yaskov, 2018. "LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2032-2055, December.
- Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
- Ledoit, Olivier & Wolf, Michael, 2017.
"Numerical implementation of the QuEST function,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
- Olivier Ledoit & Michael Wolf, 2016. "Numerical implementation of the QuEST function," ECON - Working Papers 215, Department of Economics - University of Zurich, revised Jan 2017.
- Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
- Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
- Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005.
"Large dimension forecasting models and random singular value spectra,"
Science & Finance (CFM) working paper archive
500066, Science & Finance, Capital Fund Management.
- Jean-Philippe Bouchaud & Laurent Laloux & M. Augusta Miceli & Marc Potters, 2005. "Large dimension forecasting models and random singular value spectra," Papers physics/0512090, arXiv.org.
- Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
- Péché, S., 2006. "Non-white Wishart ensembles," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 874-894, April.
- Bai, Z.D. & Miao, Baiqi & Jin, Baisuo, 2007. "On limit theorem for the eigenvalues of product of two random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 76-101, January.
- Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022.
"Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization,"
Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization," Documentos de Trabajo del ICAE 2017-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Tinbergen Institute Discussion Papers 16-025/III, Tinbergen Institute.
- Bai, Z. & Li, H. & McAleer, M.J. & Wong, W.-K., 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometric Institute Research Papers EI2016-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Jerzy Rydlewski & Małgorzata Snarska & Dominik Mielczarek & Daniel Kosiorowski, 2014. "Sparse Methods for Analysis of Sparse Multivariate Data From Big Economic Databases," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(1), pages 111-132, January.
- Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019.
"Large Dynamic Covariance Matrices,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
- Jin, Baisuo & Wang, Cheng & Miao, Baiqi & Lo Huang, Mong-Na, 2009. "Limiting spectral distribution of large-dimensional sample covariance matrices generated by VARMA," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2112-2125, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:8:p:1884-1897. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.