Cleaning large correlation matrices: tools from random matrix theory
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rémy Chicheportiche & J-P Bouchaud, 2015. "A nested factor model for non-linear dependencies in stock returns," Post-Print hal-01339978, HAL.
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
- Ledoit, Olivier & Wolf, Michael, 2017.
"Numerical implementation of the QuEST function,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
- Olivier Ledoit & Michael Wolf, 2016. "Numerical implementation of the QuEST function," ECON - Working Papers 215, Department of Economics - University of Zurich, revised Jan 2017.
- R. Chicheportiche & J.-P. Bouchaud, 2015. "A nested factor model for non-linear dependencies in stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1789-1804, November.
- Ivailo I. Dimov & Petter N. Kolm & Lee Maclin & Dan Y. C. Shiber, 2012. "Hidden noise structure and random matrix models of stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 567-572, November.
- Stefano Ciliberti & Imre Kondor & Marc Mezard, 2007.
"On the feasibility of portfolio optimization under expected shortfall,"
Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 389-396.
- Stefano Ciliberti & Imre Kondor & Marc Mezard, 2006. "On the Feasibility of Portfolio Optimization under Expected Shortfall," Papers physics/0606015, arXiv.org.
- Pafka, Szilárd & Kondor, Imre, 2003.
"Noisy covariance matrices and portfolio optimization II,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 487-494.
- Szilard Pafka & Imre Kondor, 2002. "Noisy Covariance Matrices and Portfolio Optimization II," Papers cond-mat/0205119, arXiv.org, revised May 2002.
- J.-P. Bouchaud & L. Laloux & M. A. Miceli & M. Potters, 2007. "Large dimension forecasting models and random singular value spectra," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 201-207, January.
- Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
- Silverstein, Jack W., 1989. "On the eigenvectors of large dimensional sample covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 30(1), pages 1-16, July.
- Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
- Chamberlain, Gary & Rothschild, Michael, 1983.
"Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets,"
Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
- Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
- Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
- Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
- Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010.
"Correlation, hierarchies, and networks in financial markets,"
Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
- M. Tumminello & F. Lillo & R. N. Mantegna, 2008. "Correlation, hierarchies, and networks in financial markets," Papers 0809.4615, arXiv.org.
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
- Romain Allez & Jean-Philippe Bouchaud, 2012. "Eigenvector dynamics: general theory and some applications," Papers 1203.6228, arXiv.org, revised Jul 2012.
- Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario Mantegna, 2011.
"When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1067-1080.
- Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario N. Mantegna, 2010. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Papers 1004.4272, arXiv.org.
- George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004.
"A New Method for Determining the Number of Factors in Factor Models with Large Datasets,"
Working Papers
525, Queen Mary University of London, School of Economics and Finance.
- George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
- Haff, L. R., 1979. "An identity for the Wishart distribution with applications," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 531-544, December.
- Burda, Z. & Görlich, A. & Jarosz, A. & Jurkiewicz, J., 2004. "Signal and noise in correlation matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 295-310.
- Couillet, Romain & Pascal, Frédéric & Silverstein, Jack W., 2015. "The random matrix regime of Maronna’s M-estimator with elliptically distributed samples," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 56-78.
- Ledoit, Olivier & Wolf, Michael, 2015.
"Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
- Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
- Matteo Marsili, 2002. "Dissecting financial markets: Sectors and states," Papers cond-mat/0207156, arXiv.org.
- Yin, Y. Q., 1986. "Limiting spectral distribution for a class of random matrices," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 50-68, October.
- Matteo Marsili, 2002. "Dissecting financial markets: sectors and states," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 297-302.
- repec:dau:papers:123456789/10916 is not listed on IDEAS
- Thilo A. Schmitt & Desislava Chetalova & Rudi Schafer & Thomas Guhr, 2013. "Non-Stationarity in Financial Time Series and Generic Features," Papers 1304.5130, arXiv.org, revised May 2013.
- Haff, L. R., 1977. "Minimax estimators for a multinormal precision matrix," Journal of Multivariate Analysis, Elsevier, vol. 7(3), pages 374-385, September.
- Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
- Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
- Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
- Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
- G. Pan & J. Gao & Y. Yang & M. Guo, 2012. "Independence Test for High Dimensional Random Vectors," Monash Econometrics and Business Statistics Working Papers 1/12, Monash University, Department of Econometrics and Business Statistics.
- Michele Tumminello & Fabrizio Lillo & Rosario Nunzio Mantegna, 2007. "Kullback-Leibler distance as a measure of the information filtered from multivariate data," Papers 0706.0168, arXiv.org.
- Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
- Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
- Silverstein, Jack W., 1989. "On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 307-311, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goldberg, Lisa R & Papanicolaou, Alex & Shkolnik, Alex, 2022. "The Dispersion Bias," Department of Economics, Working Paper Series qt4kt5g2x3, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Longfeng Zhao & Wei Li & Andrea Fenu & Boris Podobnik & Yougui Wang & H. Eugene Stanley, 2017. "The q-dependent detrended cross-correlation analysis of stock market," Papers 1705.01406, arXiv.org, revised Jun 2017.
- Sebastien Valeyre, 2022. "Optimal trend following portfolios," Papers 2201.06635, arXiv.org.
- Soufiane Hayou, 2017. "On the overestimation of the largest eigenvalue of a covariance matrix," Papers 1708.03551, arXiv.org.
- Björn Uhl, 2024. "Sharpe-optimal volatility futures carry," Journal of Asset Management, Palgrave Macmillan, vol. 25(3), pages 288-302, May.
- Jean-Philippe Bouchaud, 2021. "Radical Complexity," Papers 2103.09692, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019.
"Large Dynamic Covariance Matrices,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
- Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018.
"Estimation of the global minimum variance portfolio in high dimensions,"
European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
- Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
- Jushan Bai & Shuzhong Shi, 2011. "Estimating High Dimensional Covariance Matrices and its Applications," Annals of Economics and Finance, Society for AEF, vol. 12(2), pages 199-215, November.
- Ledoit, Olivier & Wolf, Michael, 2017.
"Numerical implementation of the QuEST function,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
- Olivier Ledoit & Michael Wolf, 2016. "Numerical implementation of the QuEST function," ECON - Working Papers 215, Department of Economics - University of Zurich, revised Jan 2017.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
- Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
- Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.
- Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
- Mörstedt, Torsten & Lutz, Bernhard & Neumann, Dirk, 2024. "Cross validation based transfer learning for cross-sectional non-linear shrinkage: A data-driven approach in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(2), pages 670-685.
- Olivier Ledoit & Michael Wolf, 2019. "Quadratic shrinkage for large covariance matrices," ECON - Working Papers 335, Department of Economics - University of Zurich, revised Dec 2020.
- Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
- Ikeda, Yuki & Kubokawa, Tatsuya, 2016. "Linear shrinkage estimation of large covariance matrices using factor models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 61-81.
- Olivier Ledoit & Michael Wolf, 2019. "Shrinkage estimation of large covariance matrices: keep it simple, statistician?," ECON - Working Papers 327, Department of Economics - University of Zurich, revised Jun 2021.
- Francisco Peñaranda & Enrique Sentana, 2024.
"Portfolio management with big data,"
Working Papers
wp2024_2411, CEMFI.
- Penaranda, Francisco & Sentana, Enrique, 2024. "Portfolio management with big data," CEPR Discussion Papers 19314, C.E.P.R. Discussion Papers.
- Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
- Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-10-30 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1610.08104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.