IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1705.html
   My bibliography  Save this paper

Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization

Author

Listed:
  • Zhidong Bai

    (KLASMOE and School of Mathematics and Statistics, Northeast Normal University, China.)

  • Hua Li

    (School of Sciences, Chang Chun University, China.)

  • Michael McAleer

    (Department of Quantitative Finance National Tsing Hua University, Taiwan and Econometric Institute Erasmus School of Economics Erasmus University Rotterdam, The Netherlands and Department of Quantitative Economics Complutense University of Madrid, Spain And Institute of Advanced Sciences Yokohama National University, Japan.)

  • Wing-Keung Wong

    (Department of Economics, Hong Kong Baptist University, China. Research Grants Council of Hong Kong, Hong Kong.)

Abstract

This paper considers the portfolio problem for high dimensional data when the dimension and size are both large. We analyze the traditional Markowitz mean-variance (MV) portfolio by large dimension matrix theory, and find the spectral distribution of the sample covariance is the main factor to make the expected return of the traditional MV portfolio overestimate the theoretical MV portfolio. A correction is suggested to the spectral construction of the sample covariance to be the sample spectrally corrected covariance, and to improve the traditional MV portfolio to be spectrally corrected. In the expressions of the expected return and risk on the MV portfolio, the population covariance matrix is always a quadratic form, which will direct MV portfolio estimation. We provide the limiting behavior of the quadratic form with the sample spectrally-corrected covariance matrix, and explain the superior performance to the sample covariance as the dimension increases to infinity proportionally with the sample size. Moreover, this paper deduces the limiting behavior of the expected return and risk on the spectrally-corrected MV portfolio, and illustrates the superior properties of the spectrally-corrected MV portfolio. In simulations, we compare the spectrally-corrected estimates with the traditional and bootstrap-corrected estimates, and show the performance of the spectrally-corrected estimates are the best in portfolio returns and portfolio risk. We also compare the performance of the new proposed estimation with deferent optimal portfolio estimates for real data from S&P 500. The empirical findings are consistent with the theory developed in the paper.

Suggested Citation

  • Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization," Documentos de Trabajo del ICAE 2017-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:1705
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/40905/1/1705.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-278, July.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    5. Frankfurter, George M. & Phillips, Herbert E. & Seagle, John P., 1971. "Portfolio Selection: The Effects of Uncertain Means, Variances, and Covariances," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(5), pages 1251-1262, December.
    6. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    7. Bob Korkie & Harry J. Turtle, 2002. "A Mean-Variance Analysis of Self-Financing Portfolios," Management Science, INFORMS, vol. 48(3), pages 427-443, March.
    8. Bruce I. Jacobs & Kenneth N. Levy & Harry M. Markowitz, 2005. "Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions," Operations Research, INFORMS, vol. 53(4), pages 586-599, August.
    9. Frederick Wong, 2003. "Efficient estimation of covariance selection models," Biometrika, Biometrika Trust, vol. 90(4), pages 809-830, December.
    10. Markowitz, Harry M & Perold, Andre F, 1981. "Portfolio Analysis with Factors and Scenarios," Journal of Finance, American Finance Association, vol. 36(4), pages 871-877, September.
    11. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    12. Yusif Simaan, 1997. "Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model," Management Science, INFORMS, vol. 43(10), pages 1437-1446, October.
    13. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    14. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    15. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    16. Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
    17. Cass, David & Stiglitz, Joseph E., 1970. "The structure of investor preferences and asset returns, and separability in portfolio allocation: A contribution to the pure theory of mutual funds," Journal of Economic Theory, Elsevier, vol. 2(2), pages 122-160, June.
    18. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    2. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2016. "Management science, economics and finance: A connection," Documentos de Trabajo del ICAE 2016-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2018. "Management Information, Decision Sciences, and Financial Economics : a connection," Econometric Institute Research Papers 2018-004/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Kai-Yin Woo & Chulin Mai & Michael McAleer & Wing-Keung Wong, 2020. "Review on Efficiency and Anomalies in Stock Markets," Economies, MDPI, vol. 8(1), pages 1-51, March.
    6. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    7. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    2. Bai, Zhidong & Liu, Huixia & Wong, Wing-Keung, 2016. "Making Markowitz's Portfolio Optimization Theory Practically Useful," MPRA Paper 74360, University Library of Munich, Germany.
    3. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    4. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2015. "Informatics, Data Mining, Econometrics and Financial Economics: A Connection," Econometric Institute Research Papers EI2015-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Hurley, W.J. & Brimberg, Jack, 2015. "A note on the sensitivity of the strategic asset allocation problem," Operations Research Perspectives, Elsevier, vol. 2(C), pages 133-136.
    6. Chen, Binbin & Huang, Shih-Feng & Pan, Guangming, 2015. "High dimensional mean–variance optimization through factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 140-159.
    7. Kondor, Imre & Pafka, Szilard & Nagy, Gabor, 2007. "Noise sensitivity of portfolio selection under various risk measures," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1545-1573, May.
    8. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    10. Taras Bodnar & Arjun K. Gupta & Nestor Parolya, 2013. "Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix," Papers 1308.0931, arXiv.org, revised Mar 2014.
    11. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    13. Emmanuel Jurczenko & Bertrand Maillet & Paul Merlin, 2008. "Efficient Frontier for Robust Higher-order Moment Portfolio Selection," Post-Print halshs-00336475, HAL.
    14. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    15. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    16. David E. Allen & Michael McAleer & Shelton Peiris & Abhay K. Singh, 2014. "Hedge Fund Portfolio Diversification Strategies Across the GFC," Working Papers in Economics 14/27, University of Canterbury, Department of Economics and Finance.
    17. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    18. Kircher, Felix & Rösch, Daniel, 2021. "A shrinkage approach for Sharpe ratio optimal portfolios with estimation risks," Journal of Banking & Finance, Elsevier, vol. 133(C).
    19. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    20. Varga-Haszonits, Istvan & Caccioli, Fabio & Kondor, Imre, 2016. "Replica approach to mean-variance portfolio optimization," LSE Research Online Documents on Economics 68955, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    Markowitz mean-variance optimization; Optimal return; Optimal portfolio allocation; Large random matrix; Bootstrap method; Spectrally-corrected covariance matrix.;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.