Some limiting theorems of some random quadratic forms
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
- Silverstein, J. W. & Bai, Z. D., 1995. "On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 175-192, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
- Xie, Junshan & Zeng, Yicheng & Zhu, Lixing, 2021. "Limiting laws for extreme eigenvalues of large-dimensional spiked Fisher matrices with a divergent number of spikes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
- Wang, Lili & Paul, Debashis, 2014. "Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→0," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 25-52.
- Li, Hua & Bai, Zhi Dong & Wong, Wing Keung, 2015. "High dimensional Global Minimum Variance Portfolio," MPRA Paper 66284, University Library of Munich, Germany.
- Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
- Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
- Tingting Zou & Shurong Zheng & Zhidong Bai & Jianfeng Yao & Hongtu Zhu, 2022. "CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data," Statistical Papers, Springer, vol. 63(2), pages 605-664, April.
- Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
- Li, Hua & Bai, Zhidong & Wong, Wing-Keung & McAleer, Michael, 2022.
"Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization,"
Econometrics and Statistics, Elsevier, vol. 24(C), pages 133-150.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-corrected estimation for high-dimensional markowitz mean-variance optimization," Documentos de Trabajo del ICAE 2017-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Bai, Z. & Li, H. & McAleer, M.J. & Wong, W.-K., 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Econometric Institute Research Papers EI2016-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2016. "Spectrally-Corrected Estimation for High-Dimensional Markowitz Mean-Variance Optimization," Tinbergen Institute Discussion Papers 16-025/III, Tinbergen Institute.
- Svensson, Jens, 2007. "The asymptotic spectrum of the EWMA covariance estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 621-630.
- Pan, Guangming, 2010. "Strong convergence of the empirical distribution of eigenvalues of sample covariance matrices with a perturbation matrix," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1330-1338, July.
- M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.
- Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
- Zhang, Yangchun & Hu, Jiang & Li, Weiming, 2022. "CLT for linear spectral statistics of high-dimensional sample covariance matrices in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
- Bai, Zhidong & Wang, Chen, 2015. "A note on the limiting spectral distribution of a symmetrized auto-cross covariance matrix," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 333-340.
- Ledoit, Olivier & Wolf, Michael, 2015.
"Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions,"
Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
- Olivier Ledoit & Michael Wolf, 2013. "Spectrum estimation: a unified framework for covariance matrix estimation and PCA in large dimensions," ECON - Working Papers 105, Department of Economics - University of Zurich, revised Jul 2013.
- Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018.
"Estimation of the global minimum variance portfolio in high dimensions,"
European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
- Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2014. "Estimation of the Global Minimum Variance Portfolio in High Dimensions," Papers 1406.0437, arXiv.org, revised Nov 2015.
More about this item
Keywords
Convergence rate Large dimensional matrix Martingale Quadratic forms;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:75:y:2005:i:3:p:151-157. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.